A Deterministic Breakdown Model for Dielectric Interfaces Subjected to Tangential Electric Field

Author(s):  
Emre Kantar ◽  
Sverre Hvidsten
Author(s):  
Stephen H. Taylor ◽  
Suresh V. Garimella

A sensor for detecting imperfections in the distribution of a dielectric thermal interface is proposed. The sensor can detect imperfections such as voids, cracks, and interface gap changes on the millimeter scale. A rake of long, parallel electrodes is imbedded flush into each opposing substrate face of a narrow gap interface, and exposed to the gap formed between the two surfaces. Electrodes are oriented such that their lengthwise dimension in one substrate runs perpendicular to the other. Capacitance measurements taken at each crossing point (junction) allow for characterization of the region, and subsequently, detection of voids present or changes in gap size. The electric field associated with each electrode junction is numerically simulated and analyzed. Design criteria for the electrode junctions that localize the electric fields are presented. The electrode configuration employed gives rise to a non-trivial network of interacting capacitances. Due to these interactions, the actual capacitance at any given junction cannot be measured directly; instead, the measurement represents an equivalent capacitance resulting from this network. A generalized solution for analyzing the circuit network is presented. An experimental test unit is described, and experimental data are presented for measurements from a typical electrode junction. The results agree with predictions from the network model for cases that meet the design criteria for electric field localization; when the localization criteria are not met, the measurements deviate from the model predictions as expected.


1972 ◽  
Vol 51 (3) ◽  
pp. 585-591 ◽  
Author(s):  
C. Sozou

The deformation of a liquid drop immersed in a conducting fluid by the imposition of a uniform electric field is investigated. The flow field set up is due to the surface charge and the tangential electric field stress over the surface of the drop, and the rotationality of the Lorentz force which is set up by the electric current and the associated magnetic field. It is shown that when the fluids are poor conductors and good dielectrics the effects of the Lorentz force are minimal and the flow field is due to the stresses of the electric field tangential to the surface of the drop, in agreement with other authors. When, however, the fluids are highly conducting and poor dielectrics the effects of the Lorentz force may be predominant, especially for larger drops.


1979 ◽  
Vol 6 (4) ◽  
pp. 305-308 ◽  
Author(s):  
F. S. Mozer ◽  
R. B. Torbert ◽  
U. V. Fahleson ◽  
C.-G. Fälthammar ◽  
A. Gonfalone ◽  
...  

2009 ◽  
Vol 02 (01) ◽  
pp. 253-263 ◽  
Author(s):  
George J. Caporaso ◽  
Yu-Jiuan Chen ◽  
Stephen E. Sampayan

Dielectric wall accelerators, a class of induction accelerators, employ a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse-generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge-to-mass-ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.


Sign in / Sign up

Export Citation Format

Share Document