Anomalous Field-Induced Desorption of Cesium from a Quasi-Spherical Surface of a Carbon-Saturated Rhenium Crystal

2019 ◽  
Vol 45 (5) ◽  
pp. 519-521
Author(s):  
D. P. Bernatskii ◽  
V. G. Pavlov
2018 ◽  
Vol 939 (9) ◽  
pp. 2-9
Author(s):  
V.V. Popadyev

The author analyzes the arguments in the report by Robert Kingdon, Petr Vanicek and Marcelo Santos “The shape of the quasigeoid” (IX Hotin-Marussi Symposium on Theoretical Geodesy, Italy, Rome, June 18 June 22, 2018), which presents the criticisms for the basic concepts of Molodensky’s theory, the normal height and height anomaly of the point on the earth’s surface, plotted on the reference ellipsoid surface and forming the surface of a quasigeoid. The main advantages of the system of normal heights, closely related to the theory of determining the external gravitational field and the Earth’s surface, are presented. Despite the fact that the main advantage of Molodensky’s theory is the rigorous determining the anomalous potential on the Earth’s surface, the use of the system of normal heights can be shown and proved separately. To do this, a simple example is given, where the change of marks along the floor of a strictly horizontal tunnel in the mountain massif is a criterion for the convenience of the system. In this example, the orthometric heights show a change of 3 cm per 1.5 km, which will require corrections to the measured elevations due the transition to a system of orthometric heights. The knowledge of the inner structure of the rock mass is also necessary. It should be noted that the normal heights are constant along the tunnel and behave as dynamic ones and there is no need to introduce corrections. Neither the ellipsoid nor the quasi-geoid is a reference for normal heights, because so far the heights are referenced to initial tide gauge. The points of the earth’s surface are assigned a height value; this is similar to the ideas of prof. L. V. Ogorodova about the excessive emphasis on the concept of quasigeoid. A more general term is the height anomaly that exists both for points on the Earth’s surface and at a distance from it and decreases together with an attenuation of the anomalous field.


2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Olivier Bénichou ◽  
Carlos Mejía-Monasterio ◽  
Gleb Oshanin
Keyword(s):  

2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Pengfei Li ◽  
Guofu Zhai ◽  
Wenjing Pang ◽  
Wen Hui ◽  
Wenjuan Zhang ◽  
...  

In this study, a new moving amplification matching algorithm was proposed, and then the temporal and spatial differences and correlation were analysed and evaluated by comparing the FengYun-4A Lightning Mapping Imager (FY-4A LMI) data and the China Meteorological Administration Lightning Detection Network Advanced TOA and Direction (CMA-LDN ADTD) system data of southwest China in July 2018. The results are as follows. Firstly, the new moving amplification matching algorithm could effectively reduce the number of invalid operations and save the operation time in comparison to the conventional ergodic algorithms. Secondly, LMI has less detection efficiency during the daytime, using ADTD as a reference. The lightning number detected by ADTD increased from 5:00 AM UTC (13:00 PM BJT, Beijing Time) and almost lasted for a whole day. Thirdly, the trends of lightning data change of LMI and ADTD were the same as the whole. The average daily lightning matching rate of the LMI in July was 63.23%. The average hourly lightning matching rate of the LMI in July was 75.08%. Lastly, the mean value of the spherical surface distance in the matched array was 35.49 km, and roughly 80% of the matched distance was within 57 km, indicating that the spatial threshold limit was relatively stable. The correlation between LMI lightning radiation intensity and ADTD lighting current intensity was low.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


Author(s):  
Fenqiang Zhao ◽  
Zhengwang Wu ◽  
Fan Wang ◽  
Weili Lin ◽  
Shunren Xia ◽  
...  

2020 ◽  
Vol 15 (S359) ◽  
pp. 192-194
Author(s):  
Elismar Lösch ◽  
Daniel Ruschel-Dutra

AbstractGalaxy mergers are known to drive an inflow of gas towards galactic centers, potentia- lly leading to both star formation and nuclear activity. In this work we aim to study how a major merger event in the ARP 245 system is linked with the triggering of an active galactic nucleus (AGN) in the NGC galaxy 2992. We employed three galaxy collision numerical simulations and calculated the inflow of gas through four different concentric spherical surfaces around the galactic centers, estimating an upper limit for the luminosity of an AGN being fed the amount of gas crossing the innermost spherical surface. We found that these simulations predict reasonable gas inflow rates when compared with the observed AGN luminosity in NGC 2992.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Yixiang Bian ◽  
Can He ◽  
Kaixuan Sun ◽  
Longchao Dai ◽  
Hui Shen ◽  
...  

Purpose The purpose of this paper is to design and fabricate a three-dimensional (3D) bionic airflow sensing array made of two multi-electrode piezoelectric metal-core fibers (MPMFs), inspired by the structure of a cricket’s highly sensitive airflow receptor (consisting of two cerci). Design/methodology/approach A metal core was positioned at the center of an MPMF and surrounded by a hollow piezoceramic cylinder. Four thin metal films were spray-coated symmetrically on the surface of the fiber that could be used as two pairs of sensor electrodes. Findings In 3D space, four output signals of the two MPMFs arrays can form three “8”-shaped spheres. Similarly, the sensing signals for the same airflow are located on a spherical surface. Originality/value Two MPMF arrays are sufficient to detect the speed and direction of airflow in all three dimensions.


Sign in / Sign up

Export Citation Format

Share Document