anisotropy constant
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2786
Author(s):  
David Serantes ◽  
Daniel Baldomir

The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (K), the particle moment may fluctuate internally and thus undermine the agglomeration process. Based on the comparison between the involved timescales, we study in this work how the threshold size for magnetic agglomeration (daggl) varies depending on the K value. Our results suggest that small variations in K-due to, e.g., shape contribution, might shift daggl by a few nm. A comparison with the usual superparamagnetism estimation is provided, as well as with the energy competition approach. In addition, based on the key role of the anisotropy in the hyperthermia performance, we also analyse the associated heating capability, as non-agglomerated particles would be of high interest for the application.


2021 ◽  
Vol 7 (8) ◽  
pp. 116
Author(s):  
Gonzalo Vallejo-Fernandez ◽  
Markus Meinert

There is significant interest worldwide to identify new antiferromagnetic materials suitable for device applications. Key requirements for such materials are: relatively high magnetocrystalline anisotropy constant, low cost, high corrosion resistance and the ability to induce a large exchange bias, i.e., loop shift, when grown adjacent to a ferromagnetic layer. In this article, a review of recent developments on the novel antiferromagnetic material MnN is presented. This material shows potential as a replacement for the commonly used antiferromagnet of choice, i.e., IrMn. Although the results so far look promising, further work is required for the optimization of this material.


2021 ◽  
Author(s):  
M.A. Abdo ◽  
S.F. Mansour ◽  
Faten Al-Hazmi ◽  
M.S. AlHammad ◽  
M.S. Sadeq

Abstract This study reports the impact of lanthanum substituted Co-Cu ferrite nanoparticles on the RhB dye disposal. Moreover, a complete investigation for the structural, magnetic and optical properties for Co0.5Cu0.5LaxFe2-xO4 (CCL) nanoferrites was executed. These nanocrystals synthesized via a combustion approach with a peculiar lattice parameter behavior; which discussed through three hypotheses. STEM-EDX micrographs of some selective samples confirm the nanocrystalline nature with presence of all constituents’ chemical elements CCL nanoferrites. The saturation magnetization of CCL nanoferrites was tuned with La3+ ions substitution. Contrary to the expected results, anisotropy constant introduced a decrement behavior with La/Fe substitution process. The microwave frequency (ωM) values for all CCL nanoparticles are in the range 11.87 GHz–9.46 GHz. The band gap has a peculiar behavior; a red shift and followed by a blue one. Through photodegradation testing, we explicate the RhB degradation mechanisms over our CCL nanoferrites. The nanoferrite Co0.5Cu0.5La0.15Fe1.85O4 has a moderate saturation magnetization, highest coercivity, and lowest loss which is a suitable candidate for data recording applications, furthermore can be utilized as a photocatalyst for RhB effluents removal with degradation efficiency 94.50% at 180 min solar radiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hoang Thanh Nguyen ◽  
Tuan Manh Nguyen

Biocompatible magnetic poly (glycidyl methacrylate) microsphere is a novel nanocomposite with a myriad of promising bioapplications. Investigation of their characteristics by experimental analysis methods has also been carried out in the past. However, a survey of the magnetic anisotropy constant has not been mentioned and the influence of the poly (glycidyl methacrylate) polymer matrix on the Fe3O4 magnetite nanoparticles embedded inside has also not been discussed. Moreover, the accurate characterization of the magnetite nanoparticle size distribution remains challenging. In this paper, we present an effective approach was used to solve these problems. First of all, we combine both experiment and theory to estimate the effective magnetic anisotropy constant. Besides that, we implement an accurate method to determine magnetite nanoparticle size distribution in the magnetic poly (glycidyl methacrylate) microspheres composite nanomaterial.


2021 ◽  
Vol 13 (4) ◽  
pp. 718-723
Author(s):  
Dongkai Qiao ◽  
Yu Deng ◽  
Chia-Chieh Ho ◽  
Ching-Yen Ho ◽  
Bor-Chyuan Chen ◽  
...  

Cancer cells can be killed by magnetic-nanoparticles-induced hysteresis heat under an external alternating magnetic field. However, the hysteresis heat-induced temperature must be precisely controlled to prevent damages to the ambient normal tissue from cancer cells. Therefore, this study employs a heat model to analyze the variation of temperature with time in magnetic nanoparticles within cancer. Results show that the temperature increase with time predicted from this study is consistent with the available experimental data. The effect of anisotropy constant on temperature rise with time is presented. The anisotropy constant makes the behaviours of temperature variation significantly different.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farzana Majid ◽  
Ammarah Shahin ◽  
Sadia Ata ◽  
Ismat Bibi ◽  
Abdul Malik ◽  
...  

Abstract A series of cobalt ferrite nanoparticles were prepared using hydrothermal process by varying the reaction temperature. The structural, magnetic and dielectric properties have been studied with the help of X-ray diffractometer (XRD), vibrating sample magnetometer (VSM) and impedance analyzer respectively. XRD spectra of all samples confirmed the formation of cobalt ferrite (CoFe2O4) nanoparticles (NPs). The lattice constant ‘a’ for temperature series samples is averaged around 8.4023 Å. Crystallite size of temperature series is calculated by Debye–Scherer formula that lies in the range of 15.04–20.49 nm. Its values increase because the chance of coalescence increases by increasing temperature. The maximum packing factor is obtained for the sample with highest reaction temperature. From VSM data, we get the M–H hysteresis curves for complete temperature series which confirms the magnetic nature. The maximum saturation magnetization 150.67 emu/g is obtained for the sample prepared at highest temperature. Different magnetic parameter such as saturation magnetization, coercivity, retentivity, squareness ratio, anisotropy constant and magneton number has been calculated from VSM data. AC response of all prepared ferrites was studied with impedance analyzer of frequency range 20 Hz to 20 MHz. Ferrites are the insulating materials, so, eddy current does not induce in transformer cores made of ferrite materials. In the medical field cobalt ferrite is used for drug delivery, as a biosensor and in MRI.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Junming Gou ◽  
Tianyu Ma ◽  
Xiaolian Liu ◽  
Changsheng Zhang ◽  
Liangwei Sun ◽  
...  

AbstractLarge and sensitive magnetostriction (large strain induced by small magnetic fields) is highly desired for applications of magnetostrictive materials. However, it is difficult to simultaneously improve magnetostriction and reduce the switching field because magnetostriction and the switching field are both proportional to the magnetocrystalline anisotropy. To solve this fundamental challenge, we report that introducing tetragonal nanoprecipitates into a cubic matrix can facilitate large and sensitive magnetostriction even in random polycrystals. As exhibited in a proof-of-principle reference, Fe–Ga alloys, the figure of merit—defined by the saturation magnetostriction over the magnetocrystalline anisotropy constant—can be enhanced by over 5-fold through optimum aging of the solution-treated precursor. On the one hand, the aging-induced nanodispersive face-centered tetragonal (FCT) precipitates create local tetragonal distortion of the body-centered cubic (BCC) matrix, substantially enhancing the saturation magnetostriction to be comparable to that of single crystal materials. On the other hand, these precipitates randomly couple with the matrix at the nanoscale, resulting in the collapse of net magnetocrystalline anisotropy. Our findings not only provide a simple and feasible approach to enhance the magnetostriction performance of random polycrystalline ferromagnets but also provide important insights toward understanding the mechanism of heterogeneous magnetostriction.


Author(s):  
А.И. Дмитриев ◽  
А.В. Кочура ◽  
С.Ф. Маренкин ◽  
E. Lahderanta ◽  
А.П. Кузьменко ◽  
...  

The magnetic anisotropy of needle-like single-crystal MnSb inclusions in the InSb matrix was determined and studied in the temperature range 5 – 350 K. In granular InSb-MnSb samples a power-law dependence of the anisotropy constant K(T) on the saturation magnetization MS(T) is observed in the temperature range 5 – 350 K with an exponent n = 3.2 ± 0.4 in accordance with the theories developed by Akulov, Zener, and Callens.


Sign in / Sign up

Export Citation Format

Share Document