An optimization technique for efficient channel allocation in cellular network

2014 ◽  
Vol 59 (11) ◽  
pp. 1225-1233 ◽  
Author(s):  
S. N. Ohatkar ◽  
D. S. Bormane
2017 ◽  
Vol 96 (4) ◽  
pp. 6085-6110 ◽  
Author(s):  
Sunil Kumar Singh ◽  
Achal Kaushik ◽  
Deo Prakash Vidyarthi

2019 ◽  
Vol 9 (20) ◽  
pp. 4282 ◽  
Author(s):  
Zain Ali ◽  
Yanyi Rao ◽  
Wali Ullah Khan ◽  
Guftaar Ahmad Sardar Sidhu

The fifth generation (5G) wireless communication systems promise to provide massive connectivity over the limited available spectrum. Various new transmission paradigms such as non-orthogonal multiple access (NOMA) and cognitive radio (CR) have emerged as potential 5G enabling technologies. These techniques offer high spectral efficiency by allowing multiple users to communicate on the same frequency channel, simultaneously. A combination of both techniques may further enhance the performance of the system. This work aims to maximize the achievable rate of a multi-user multi-channel NOMA based CR system. We propose an efficient user pairing, channel assignment and power optimization technique for the secondary users while the performance of primary users is guaranteed through interference temperature limits. The results show that, at small values of the power budget or high interference threshold, optimizing channel allocation and user pairing proves to be more beneficial than optimal power allocation to the user pairs. The proposed joint optimization technique provides promising results for all values of the power budget, interference threshold and rate requirement of the communicating users.


2003 ◽  
Vol 04 (02) ◽  
pp. 227-245
Author(s):  
Gary H. K. Ma ◽  
Albert Y. Zomaya

The channel allocation problem (CAP) that involves the allocation a disjoint set of channels to meet the call demands for a cellular network is an NP-complete combinatorial optimisation problem [1]. The CAP can be viewed as: static (during the initial design/planning of the cellular network) and dynamic (when the network is operational). This paper presents a new algorithm designed to solve the online call control problem. This algorithm is a modified version of the maximum channel packing channel allocation (MCPCA) scheme, proposed by [19]. The original MCPCA scheme aims at maximising the reuse of channels (i.e. dense packing) and simulation results showed that it is more efficient than fixed channel assignment (FCA) or borrowing channel assignment (BCA) schemes for solving the class of minimum blocking frequency assignment problem (MB-FAP) [2]. The new algorithm, entitled maximum channel packing channel assignment with re-assignment (MCPCA-RA), takes the dense packing mechanism further by allowing a neighbouring cell to re-assigns a channel to an existing call and releases the channel previously used to the new request. Simulation results that the number of blocked calls is reduced by an average of 6% compared to the original MCPCA scheme, but at the cost of extra computations due to the reassignment mechanism. Since the reassignment computations only involve cells in the local neighbourhood and can be compute in a parallel manner, MCPCA-RA algorithm is practical and efficient in real-time.


Sign in / Sign up

Export Citation Format

Share Document