Carbon dioxide emission from the soil surface in a bilberry-sphagnum pine forest of the Middle Taiga

2013 ◽  
Vol 46 (5) ◽  
pp. 572-578 ◽  
Author(s):  
A. F. Osipov
2017 ◽  
Vol 54 (5) ◽  
pp. 721-740 ◽  
Author(s):  
Antonio Luis Montealegre-Gracia ◽  
María Teresa Lamelas-Gracia ◽  
Alberto García-Martín ◽  
Juan de la Riva-Fernández ◽  
Francisco Escribano-Bernal

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shujiro Komiya ◽  
Kosuke Noborio ◽  
Kentaro Katano ◽  
Tiwa Pakoktom ◽  
Meechai Siangliw ◽  
...  

Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95–97% and 13–35%, respectively.


Agriculture ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 119 ◽  
Author(s):  
Niccolò Pampuro ◽  
Patrizia Busato ◽  
Eugenio Cavallo

The study aimed at determining ammonia and GHG emissions from soil fertilized with pellets made from composted pig slurry solid fraction and to evaluate the effects of pellet diameter and pellet application method on gaseous emissions. A laboratory scale experiment was carried out investigating two composts: pig slurry solid fraction compost (SSFC) and pig slurry solid fraction mixed with wood chips compost (WCC). The two composts were pelettized in two different diameters—6 and 8 mm—by means of mechanical pelletizer. In total, eight fertilized treatments plus one unfertilized control were included in the experiment. The investigated pellets were applied at the same nitrogen rate (equivalent to 200 kg ha−1) using two different methods (on soil surface and incorporated into the soil). Ammonia (NH3) emission was monitored immediately after pellet application, while nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were measured on a 57-day incubation period. As expected, ammonia volatilization was not detected from any of the treatments investigated. At the end of the experiment, the cumulative amounts of N2O, CO2 and CH4 ranged from 2.70 mg N-N2O m−2 to 24.30 mg N-N2O m−2, from 601.89 mg C-CO2 m−2 to 1170.34 mg C-CO2 m−2 and from 1.22 mg C-CH4 m−2 to 1.31 mg C-CH4 m−2, respectively. The overall results of the investigation highlighted that application on the soil surface reduced nitrous oxide emission, while the carbon dioxide emission increased significantly with smaller pellet diameter.


2003 ◽  
Vol 34 (1) ◽  
pp. 1-22
Author(s):  
Hirofumi ABE ◽  
Mamoru TANIGUCHI ◽  
Takuya NAGARE ◽  
Tomonori SHINKE

Sign in / Sign up

Export Citation Format

Share Document