Geodynamic model of upper mantle convection and transformations of the arctic lithosphere in the Mesozoic and Cenozoic

2013 ◽  
Vol 49 (6) ◽  
pp. 767-785 ◽  
Author(s):  
L. I. Lobkovsky ◽  
E. V. Shipilov ◽  
M. V. Kononov
2021 ◽  
Vol 12 (3) ◽  
pp. 455-470
Author(s):  
L. I. Lobkovsky ◽  
M. M. Ramazanov ◽  
V. D. Kotelkin

A geodynamic model of upper mantle convection related to the Pacific subduction zone is mathematically substantiated and applied to investigate the Cretaceous-Cenozoic evolution of Central East Asia (CEA) and the Arctic. We present a solution for the two-dimensional stationary problem of thermal convection in the upper mantle layer, considering different Rayleigh numbers and taking into account the influence of the subduction process and lithospheric movements along the upper mantle base. We describe the results of 3D modeling of nonstationary upper mantle convection in a subduction zone. Our data give grounds to propose explanations for the entire spectrum of tectonic-magmatic processes developing within CEA in the Cenozoic and the Arctic in the Upper Cretaceous and Cenozoic. We discuss the reasons why the lithosphere in CEA and the Arctic is generally shifting towards the Pacific subduction zone, considering the presence of separate magmatic provinces and rift zones. In our opinion, this is due to the existence of a large horizontally elongated convective cell, which interior is composed of smaller isometric cells. This long cell creates the effect of conveyor dragging of the lithosphere, while its internal cells produce the effect of upper mantle plumes.


2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


2018 ◽  
Vol 216 (3) ◽  
pp. 1740-1760 ◽  
Author(s):  
V Patočka ◽  
H Čížková ◽  
PJ Tackley

Geotectonics ◽  
2013 ◽  
Vol 47 (1) ◽  
pp. 1-30 ◽  
Author(s):  
N. P. Laverov ◽  
L. I. Lobkovsky ◽  
M. V. Kononov ◽  
N. L. Dobretsov ◽  
V. A. Vernikovsky ◽  
...  

Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2327-2357
Author(s):  
Lorenzo G. Candioti ◽  
Stefan M. Schmalholz ◽  
Thibault Duretz

Abstract. Many plate tectonic processes, such as subduction initiation, are embedded in long-term (>100 Myr) geodynamic cycles often involving subsequent phases of extension, cooling without plate deformation and convergence. However, the impact of upper mantle convection on lithosphere dynamics during such long-term cycles is still poorly understood. We have designed two-dimensional upper-mantle-scale (down to a depth of 660 km) thermo-mechanical numerical models of coupled lithosphere–mantle deformation. We consider visco–elasto–plastic deformation including a combination of diffusion, dislocation and Peierls creep law mechanisms. Mantle densities are calculated from petrological phase diagrams (Perple_X) for a Hawaiian pyrolite. Our models exhibit realistic Rayleigh numbers between 106 and 107, and the model temperature, density and viscosity structures agree with geological and geophysical data and observations. We tested the impact of the viscosity structure in the asthenosphere on upper mantle convection and lithosphere dynamics. We also compare models in which mantle convection is explicitly modelled with models in which convection is parameterized by Nusselt number scaling of the mantle thermal conductivity. Further, we quantified the plate driving forces necessary for subduction initiation in 2D thermo-mechanical models of coupled lithosphere–mantle deformation. Our model generates a 120 Myr long geodynamic cycle of subsequent extension (30 Myr), cooling (70 Myr) and convergence (20 Myr) coupled to upper mantle convection in a single and continuous simulation. Fundamental features such as the formation of hyperextended margins, upper mantle convective flow and subduction initiation are captured by the simulations presented here. Compared to a strong asthenosphere, a weak asthenosphere leads to the following differences: smaller value of plate driving forces necessary for subduction initiation (15 TN m−1 instead of 22 TN m−1) and locally larger suction forces. The latter assists in establishing single-slab subduction rather than double-slab subduction. Subduction initiation is horizontally forced, occurs at the transition from the exhumed mantle to the hyperextended passive margin and is caused by thermal softening. Spontaneous subduction initiation due to negative buoyancy of the 400 km wide, cooled, exhumed mantle is not observed after 100 Myr in model history. Our models indicate that long-term lithosphere dynamics can be strongly impacted by sub-lithosphere dynamics. The first-order processes in the simulated geodynamic cycle are applicable to orogenies that resulted from the opening and closure of embryonic oceans bounded by magma-poor hyperextended rifted margins, which might have been the case for the Alpine orogeny.


2020 ◽  
Vol 177 (9) ◽  
pp. 4289-4307
Author(s):  
Tatiana S. Sokolova ◽  
Alena I. Seredkina ◽  
Peter I. Dorogokupets

2020 ◽  
Author(s):  
Qunfan Zheng ◽  
Huai Zhang

<p>East Asia is a tectonically active area on earth and has a complicated lithospheric deformation due to the western Indo-Asian continental collision and the eastern oceanic subduction mainly from Pacific plate. Till now, mantle dynamics beneath this area is not well understood due to its complex mantle structure, especially in the framework of global spherical mantle convection. Hence, a series of numerical models are conducted in this study to reveal the key controlling parameters in shaping the present-day observed mantle structure beneath East Asia under 3-D global mantle flow models. Global mantle flow models with coarse mesh are firstly applied to give a rough constraint on global mantle convection. The detailed description of upper mantle dynamics of East Asia is left with regional refined mesh. A power-law rheology and absolute plate field are applied subsequently to get a better constraint on the related regional mantle rheological structure and surficial boundary conditions. Thus, the refined and reasonable velocity and stress distributions of upper mantle beneath East Asia at different depths are retrieved based on our 3-D global mantle flow simulations. The derived large shallow mantle flow beneath the Tibetan Plateau causes significant lithospheric shear drag and dynamic topography that result in prominent tectonic evolution of this area. And the Indo–Asian collision may have induced mantle flow beneath the Indian plate and the different velocity structures between the asthenosphere and lithosphere indicate the shear drag of asthenospheric mantle. That may explain the reason that Indo–Asian collision has occurred for 50 Ma, and this collision can still continue to accelerate uplift in the Tibetan plateau. Finally, we also consider the possible implementations of 3-D numerical simulations combined with global lithosphere and deep mantle dynamics so as to discuss the relevant influences.</p>


Sign in / Sign up

Export Citation Format

Share Document