A Novel Phosphorus/Silicon-Containing Flame Retardant—Functionalized Graphene Nanocomposite: Preparation, Characterization and Flame Retardancy

2020 ◽  
Vol 93 (12) ◽  
pp. 1931-1939
Author(s):  
Jiangbo Wang
RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 24993-25000 ◽  
Author(s):  
Kang Dai ◽  
Shuai Sun ◽  
Wenbin Xu ◽  
Yuan Song ◽  
Zhenzhen Deng ◽  
...  

A covalently-functionalized graphene oxide with excellent flame retardancy was successfully prepared.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


2021 ◽  
Vol 260 ◽  
pp. 117827
Author(s):  
Ying-Jun Xu ◽  
Lian-Yi Qu ◽  
Yun Liu ◽  
Ping Zhu

2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.


Sign in / Sign up

Export Citation Format

Share Document