ep matrix
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 22)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yuan Jia ◽  
Juxiang Yang ◽  
Weijie Dong ◽  
Beibei Li ◽  
Zhen Liu

Abstract To improve the dielectric properties and thermal conductivities of epoxy resins (EP), titanium dioxide superfine powders with microspheres structure (S-TiO2) were prepared via a hydrothermal process based on the sodium dodecyl benzene sulfonate and hydroxyl silicate. The different content of S-TiO2 was then employed as modifiers to add into EP resin to prepare the S-TiO2/EP composites. The structure and morphology of the prepared S-TiO2 was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and influences of different addition of S-TiO2 on the thermal conductivity of S-TiO2/EP composites are researched, while their dielectric constant and dielectric loss are also studied. The results suggested that the reasonable content of S-TiO2 can endow the S-TiO2/EP composites with higher dielectric constant without excessive increase their dielectric loss even under the high frequency. Furthermore, the thermal conductivity of S-TiO2/EP are also be improved, which can be attributed to the good thermal conductivity of S-TiO2 itself and the thermal conductivity path formed by S-TiO2 inside the EP matrix.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3857
Author(s):  
Jiangbo Wang

A novel polysilicone flame retardant (PMDA) has been synthesized and covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO-PMDA. The chemical structure and morphology of GO-PMDA was characterized and confirmed by the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), atomic force microscope (AFM), and thermogravimetric analysis (TGA). The results of dynamic mechanical analysis (DMA) indicated that the grafting of PMDA improved the dispersion and solubility of GO sheets in the epoxy resin (EP) matrix. The TGA and cone calorimeter measurements showed that compared with the GO, GO-PMDA could significantly improve the thermal stability and flame retardancy of EP. In comparison to pure EP, the peak heat release rate (pHRR) and total heat release (THR) of EP/GO-PMDA were reduced by 30.5% and 10.0% respectively. This greatly enhanced the flame retardancy of EP which was mainly attributed to the synergistic effect of GO-PMDA. Polysilicone can create a stable silica layer on the char surface of EP, which reinforces the barrier effect of graphene.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012030
Author(s):  
P Skalková ◽  
V Krmelová ◽  
J Krmela ◽  
D Ondrušová ◽  
A Crkoň

Abstract This work was focused on studying the properties of epoxy (EP) composite materials reinforced with glass, (GF) carbon (CF) and aramid (AF) fibres. The composites were made by hand lay-up (HL) and vacuum infusion process (VIP) with 8, 10, 12 number of fabric layers. Studied were tensile strength, elongation, flexural stress, flexural strain, thermal stability, texture of surfaces, cuts, fractures of laminates and the thickness of the laminate according to the type and number of layers of fabric and the method of manufacture. Composites made by VIP achieve better mechanical properties than composites made by HL. Tensile strength was highest in composites reinforced with AF. Composite materials reinforced with GF exhibit the lowest values of tensile strength. Flexural strength was significantly the highest in CF reinforced composites followed by the laminates reinforced with GF and AF. The highest values of flexural deformation were measured in composites reinforced with AF and the lowest values of flexural deformation were measured in composites reinforced with CF. By thermogravimetric analysis (TGA) was recorded weight loss of the EP matrix in the range from 290 to 480 °C and AF in range from 530 to 605 °C. By TGA was demonstrated lower content of EP matrix in the composites made by VIP, which was confirmed by comparison of thickness of the studied laminates.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3221
Author(s):  
Feiyue Wang ◽  
Jiahao Liao ◽  
Long Yan ◽  
Hui Liu

A novel diaminodiphenylmethane (DDM) modified ammonium polyphosphate (APP) flame retardant, DDP, was successfully synthesized via ion-exchange reaction. DDP was introduced into epoxy resins (EPs) to reduce flammability. A comparable level of DDP exerts better flame-retardant and smoke suppression efficiencies in EP than APP. An EP blend containing 15 wt% DDP displays a limiting oxygen index (LOI) value of 37.1% and a UL 94 V-0 rating, and further exhibits a 32.3% reduction in total heat release and a 48.0% reduction in total smoke production compared with pure EP. The presence of DDP greatly facilitates char formation during combustion, and the char mass from thermal decomposition of an EP blend is 37.8% smaller than that of an EP blend containing 15 wt% DDP at 800 °C. The incorporation of DDP into EP blends has a smaller impact on the glass transition temperature and tensile strength than those of a comparable level of APP. This reflects the better compatibility of DDP with the EP matrix compared with that for APP.


2021 ◽  
Author(s):  
Zhen Liu ◽  
Yuan Jia ◽  
Juxiang Yang ◽  
Ruifeng Shi

Abstract In order to improve the thermal conductivity of epoxy resins (EP) without reducing their dielectric properties, a kind of molybdenum disulfide with microspheres structure (S-MoS2) was prepared via surfactant promoting hydrothermal process based on the sodium molybdate, thiosemicarbazide, and sodium dodecyl sulfate. The S-MoS2 was then used as modifiers to add into EP matrix to prepare a new kind of S-MoS2/EP composites. The morphology of the prepared S-MoS2 was observed by X-ray diffraction (XRD) scanning electron microscopy (SEM), while the influence of different S-MoS2 loading on the dielectric properties, thermal conductivity and thermal resistance of S-MoS2/EP composites was also researched. The results suggested that the reasonable content of S-MoS2 can highly improve the thermal conductivity of S-MoS2/EP, which can be attributed to the excellent thermal resistant and uniform dispersion of S-MoS2 in EP matrix.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2013
Author(s):  
Zhong Wu ◽  
Jingyun Chen ◽  
Qifeng Li ◽  
Da-Hai Xia ◽  
Yida Deng ◽  
...  

By modifying the bonding of graphene (GR) and Fe3O4, a stable structure of GR-Fe3O4, namely magnetic GR, was obtained. Under the induction of a magnetic field, it can be orientated in an epoxy resin (EP) matrix, thus preparing EP/GR-Fe3O4 composites. The effects of the content of GR and the degree of orientation on the thermal conductivity of the composites were investigated, and the most suitable Fe3O4 load on GR was obtained. When the mass ratio of GR and Fe3O4 was 2:1, the thermal conductivity could be increased by 54.8% compared with that of pure EP. Meanwhile, EP/GR-Fe3O4 composites had a better thermal stability, dynamic thermomechanical properties, and excellent electrical insulation properties, which can meet the requirements of electronic packaging materials.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1244
Author(s):  
Zhicai Zhang ◽  
Nie Zhao ◽  
Fugang Qi ◽  
Biao Zhang ◽  
Bin Liao ◽  
...  

SiC was modified by fluorine-containing organic substance 1H,1H,2H,2H-trifluoro-noctyltriethoxysilane (FAS) to change its hydrophilicity from hydrophilic to superhydrophobic nanoparticles, and the optimum conditions for hydrophobicity were effectively explored. Then, different content of fluorine-modified SiC (F–SiC) nanoparticles were added to the epoxy resin (EP) matrix to prepare composite coating samples. The results showed that the surface of SiC was modified by FAS to show superhydrophobicity, and the dispersion in EP was significantly improved. After adding F–SiC, the hydrophobicity, wear resistance and corrosion resistance of the coating were significantly improved. In addition, the corrosion resistance of the composite coating containing different contents of F–SiC was analyzed through electrochemical and salt spray tests. The results showed that the corrosion resistance of the coating was the best when the addition amount was 3 wt %. In general, the composite coating with 3 wt % F–SiC had the best overall performance. Compared with the EP coating, the water contact angle of 3 wt % F–SiC/EP composite coating was increased by 62.9%, the friction coefficient was reduced by 73.5%, and the corrosion current was reduced by three orders of magnitude. This study provides a new idea for the development of ultra-wear-resistant and anti-fouling heavy-duty coatings.


2020 ◽  
Vol 4 (4) ◽  
pp. 174
Author(s):  
Giulia Fredi ◽  
Cordelia Zimmerer ◽  
Christina Scheffler ◽  
Alessandro Pegoretti

This work focuses on flexible epoxy (EP) composites containing various amounts of neat and polydopamine (PDA)-coated paraffin microcapsules as a phase change material (PCM), which have potential applications as adhesives or flexible interfaces with thermal management capability for electronics or other high-value-added fields. After PDA modification, the surface of PDA-coated capsules (MC-PDA) becomes rough with a globular appearance, and the PDA layer enhances the adhesion with the surrounding epoxy matrix, as shown by scanning electron microscopy. PDA deposition parameters have been successfully tuned to obtain a PDA layer with a thickness of 53 ± 8 nm, and the total PDA mass in MC-PDA is only 2.2 wt %, considerably lower than previous results. This accounts for the fact that the phase change enthalpy of MC-PDA is only marginally lower than that of neat microcapsules (MC), being 221.1 J/g and 227.7 J/g, respectively. Differential scanning calorimetry shows that the phase change enthalpy of the prepared composites increases with the capsule content (up to 87.8 J/g) and that the enthalpy of the composites containing MC-PDA is comparable to that of the composites with MC. Dynamic mechanical analysis evidences a decreasing step in the storage modulus of all composites at the glass transition of the EP phase, but no additional signals are detected at the PCM melting. PCM addition positively contributes to the storage modulus both at room temperature and above Tg of the EP phase, and this effect is more evident for composites containing MC-PDA. As the capsule content increases, the mechanical properties of the host EP matrix also increase in terms of elastic modulus (up to +195%), tensile strength (up to +42%), Shore D hardness (up to +36%), and creep compliance (down to −54% at 60 min). These effects are more evident for composites containing MC-PDA due to the enhanced interfacial adhesion.


2020 ◽  
Vol 20 (10) ◽  
pp. 6406-6412 ◽  
Author(s):  
Huiyu Cai ◽  
Fangchao Peng ◽  
Yixi Wang ◽  
Junyan Yi ◽  
Xingwei Cai ◽  
...  

To solve the issues of the poor dispersion performance of the inorganic flame retardant filler in epoxy resin (EP) matrix, the three-dimensional (3D) hybrid carbon nanotubes-copper aluminum (sodium dodecyl sulfate)-layered double hydroxide (CNTs-OLDH) is designed and synthesized by co-precipitation. The results indicate that the CNTs-OLDH hybrid with 3D-structure is successfully fabricated and well dispersed in EP matrix. The thermostability of EP/CNTs-OLDH nanocomposites is raised and the residue is obviously increased. When the amount of CNTs-OLDH is only 4 wt%, limit oxygen index value of EP/CNTs-OLDH nanocomposites reaches 28.5. Compared with pure EP, the heat release, smoke and gas of EP/FePP nanocomposites are inhibited by CNTs-OLDH hybrid, and the PHRR, THR and SPR values of EP/4CNTs-OLDH nanocomposites decrease by 41.7%, 27.8% and 31.7%. The improved fire retardant performances and thermal stability are attributed to the excellent homogeneous dispersion, the network structure formed by the 3D hybrid in the matrix and the outstanding flame retardant effect of CNTs and OLDH.


Sign in / Sign up

Export Citation Format

Share Document