Trichoderma reesei endoglucanase IV: A new component of biocatalysts based on the cellulase complex of the fungus Penicillium verruculosum for hydrolysis of cellulose-containing biomass

2014 ◽  
Vol 6 (1) ◽  
pp. 72-78 ◽  
Author(s):  
O. V. Proskurina ◽  
O. G. Korotkova ◽  
A. M. Rozhkova ◽  
V. Yu. Matys ◽  
A. V. Koshelev ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Dennis J. Díaz-Rincón ◽  
Ivonne Duque ◽  
Erika Osorio ◽  
Alexander Rodríguez-López ◽  
Angela Espejo-Mojica ◽  
...  

Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.


1993 ◽  
Vol 291 (3) ◽  
pp. 883-888 ◽  
Author(s):  
A K Konstantinidis ◽  
I Marsden ◽  
M L Sinnott

Cellobiohydrolase II hydrolyses alpha- and beta-D-cellobiosyl fluorides to alpha-cellobiose at comparable rates, according to Michaelis-Menten kinetics. The stereochemistry, absence of transfer products and strict hyperbolic kinetics of the hydrolysis of alpha-cellobiosyl fluoride suggest that the mechanism for the alpha-fluoride may be the enzymic counterpart of the SNi reaction observed in the trifluoroethanolysis of alpha-glucopyranosyl fluoride [Sinnott and Jencks (1980) J. Am. Chem. Soc. 102, 2026-2032]. The absolute factors by which this enzyme accelerates fluoride ion release are small and greater for the alpha-fluoride than for the beta, suggesting that its biological function may not be just glycoside hydrolysis. Cellobiohydrolase I hydrolyses only beta-cellobiosyl fluoride, which is, however, an approx. 1-3% contaminant in alpha-cellobiosyl fluoride as prepared and purified by conventional methods. Instrumental assays for the various components of the cellulase complex are discussed.


2015 ◽  
Vol 51 (6) ◽  
pp. 667-673 ◽  
Author(s):  
O. V. Proskurina ◽  
O. G. Korotkova ◽  
A. M. Rozhkova ◽  
E. G. Kondrat’eva ◽  
V. Yu. Matys ◽  
...  

1983 ◽  
Vol 215 (3) ◽  
pp. 677-683 ◽  
Author(s):  
M Nummi ◽  
M L Niku-Paavola ◽  
A Lappalainen ◽  
T M Enari ◽  
V Raunio

A 1,4-beta-D-glucan cellobiohydrolase (EC 3.2.1.91) was purified from the culture liquid of Trichoderma reesei by using biospecific sorption on amorphous cellulose and immunoaffinity chromatography. A single protein band in polyacrylamide-gel electrophoresis and one arc in immunoelectrophoresis corresponded to the enzyme activity. The Mr was 65 000. The pI was 4.2-3.6. The purified enzyme contained about 10% hexose. The enzyme differs from previously described cellobiohydrolases in being more effective in the hydrolysis of cellulose.


2018 ◽  
Vol 73 (2) ◽  
pp. 58-62 ◽  
Author(s):  
A. S. Dotsenko ◽  
A. V. Gusakov ◽  
A. M. Rozhkova ◽  
P. V. Volkov ◽  
O. G. Korotkova ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Sign in / Sign up

Export Citation Format

Share Document