scholarly journals Trichoderma reesei Cellulase Complex in Hydrolysis of Agricultural Waste of Grapefruit Peel and Orange Peel

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
I-Son Ng ◽  
Xiaomin Wu ◽  
Yinghua Lu ◽  
Chuanyi Yao
1993 ◽  
Vol 291 (3) ◽  
pp. 883-888 ◽  
Author(s):  
A K Konstantinidis ◽  
I Marsden ◽  
M L Sinnott

Cellobiohydrolase II hydrolyses alpha- and beta-D-cellobiosyl fluorides to alpha-cellobiose at comparable rates, according to Michaelis-Menten kinetics. The stereochemistry, absence of transfer products and strict hyperbolic kinetics of the hydrolysis of alpha-cellobiosyl fluoride suggest that the mechanism for the alpha-fluoride may be the enzymic counterpart of the SNi reaction observed in the trifluoroethanolysis of alpha-glucopyranosyl fluoride [Sinnott and Jencks (1980) J. Am. Chem. Soc. 102, 2026-2032]. The absolute factors by which this enzyme accelerates fluoride ion release are small and greater for the alpha-fluoride than for the beta, suggesting that its biological function may not be just glycoside hydrolysis. Cellobiohydrolase I hydrolyses only beta-cellobiosyl fluoride, which is, however, an approx. 1-3% contaminant in alpha-cellobiosyl fluoride as prepared and purified by conventional methods. Instrumental assays for the various components of the cellulase complex are discussed.


2005 ◽  
Vol 385 (2) ◽  
pp. 527-535 ◽  
Author(s):  
Kalle KIPPER ◽  
Priit VÄLJAMÄE ◽  
Gunnar JOHANSSON

Reaction conditions for the reducing-end-specific derivatization of cellulose substrates with the fluorogenic compound, anthranilic acid, have been established. Hydrolysis of fluorescence-labelled celluloses by cellobiohydrolase Cel7A from Trichoderma reesei was consistent with the active-site titration kinetics (burst kinetics), which allowed the quantification of the processivity of the enzyme. The processivity values of 88±10, 42±10 and 34±2.0 cellobiose units were found for Cel7A acting on labelled bacterial cellulose, bacterial microcrystalline cellulose and endoglucanase-pretreated bacterial cellulose respectively. The anthranilic acid derivatization also provides an alternative means for estimating the average degree of polymerization of cellulose and, furthermore, allows the quantitative monitoring of the production of reducing end groups on solid cellulose on hydrolysis by cellulases. Hydrolysis of bacterial cellulose by cellulases from T. reesei revealed that, by contrast with endoglucanase Cel5A, neither cellobiohydrolases Cel7A nor Cel6A produced detectable amounts of new reducing end groups on residual cellulose.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 30-46
Author(s):  
Léa Vilcocq ◽  
Agnès Crepet ◽  
Patrick Jame ◽  
Florbela Carvalheiro ◽  
Luis C. Duarte

Three different types of biomass sourced from forestry waste (eucalyptus residues), agricultural waste (wheat straw), and energy crop (miscanthus) were used as starting materials to produce hemicellulosic sugars, furans (furfural and hydroxymethylfurfural), and oligosaccharides. A two-step hybrid process was implemented; biomass was first autohydrolysed without any additive to extract hemicelluloses and dissolve it in water. Then, the hydrolysate was treated with a solid acid catalyst, TiO2-WOx, in order to achieve hydrolysis and produce monomeric sugars and furans. This article investigates the role of the biomass type, autohydrolysis experimental conditions, polymerisation degree and composition of hemicelluloses on the performance of the process coupling autohydrolysis and catalytic hydrolysis. The highest global yields of both oligosaccharides and monomeric sugars were obtained from Eucalyptus (37% and 18%, respectively).


2018 ◽  
Author(s):  
Marcella Fernandes de Souza ◽  
Elba Pinto da Silva Bon ◽  
Ayla Sant’ Ana da Silvab

AbstractThe high cost of commercial cellulases still hampers the economic competitiveness of the production of fuels and chemicals from lignocellulosic biomasses. This cost may be decreased by the on-site production of cellulases with the integrated use of the lignocellulosic biomass as carbon source. This integrated approach was evaluated in the present study whereby steam-pretreated sugarcane bagasse (SPSB) was used as carbon source for the production of cellulases by Trichoderma reesei Rut C30 and the produced enzymes were subsequently used for SPSB hydrolysis. An enzyme preparation with a high cellulase activity, of 1.93 FPU/mL, was obtained, and a significant β-glucosidase activity was achieved in buffered media, indicating the importance of pH control during enzyme production. The hydrolysis of SPSB with the laboratory-made mixture resulted in a glucose yield of 80%, which was equivalent to those observed for control experiments using commercial enzymes. Even though the supplementation of this mixture with external β-glucosidase from Aspergillus awamori was found to increase the initial hydrolysis rates, it had no impact on the final hydrolysis yield. It was shown that SPSB is a promising carbon source for the production of cellulases and β-glucosidases by T. reesei Rut C30 and that the enzyme preparation obtained is effective for the hydrolysis of SPSB, supporting the on-site integrated approach to decrease the cost of the enzymatic hydrolysis of lignocellulosic biomass.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Dennis J. Díaz-Rincón ◽  
Ivonne Duque ◽  
Erika Osorio ◽  
Alexander Rodríguez-López ◽  
Angela Espejo-Mojica ◽  
...  

Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.


Sign in / Sign up

Export Citation Format

Share Document