Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield

2014 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
P. P. Dik ◽  
O. V. Klimov ◽  
S. V. Budukva ◽  
K. A. Leonova ◽  
V. Yu. Pereyma ◽  
...  
2016 ◽  
Vol 56 (8) ◽  
pp. 742-744 ◽  
Author(s):  
E. V. Rakhmanov ◽  
A. A. Domashkin ◽  
Zh. K. Myltykbaeva ◽  
Zh. Kairbekov ◽  
A. A. Shigapova ◽  
...  

2012 ◽  
Vol 52 (4) ◽  
pp. 233-239 ◽  
Author(s):  
N. A. Pleshakova ◽  
I. I. Zanozina ◽  
O. E. Shabalina ◽  
E. N. Rokhman’ko ◽  
T. V. Mishustina

2021 ◽  
pp. 1-8
Author(s):  
M. Hadi ◽  
H.R. Bozorgzadeh ◽  
H.R. Aghabozorg ◽  
M.R. Ghasemi

In this paper, different materials that involved amorphous silica–alumina and hydrothermally synthesized beta zeolite and treated Y zeolite (USY) were introduced as parts of the hydrocracking catalyst supports. The prepared supports were used for preparation of Ni-Mo/silica alumina–zeolite catalysts by wetness impregnation method. The prepared catalysts were characterized by BET, temperature programmed desorption (TPD), temperature programmed reduction (TPR), and field emission – scanning electron microscopy (FE–SEM) methods. Effect of zeolite type and content on hydrocracking of n-hexadecane and vacuum gas oil in a batch and a fixed-bed reactor was investigated. Also, the content of coke formed after reaction was measured by thermal gravimetric methods (TGA). Hydrocracking was done at 400 °C and 55 bar. The hydrocracking of vacuum gas oil results showed that in the Ni-Mo/10B-30USY catalyst containing higher USY zeolite with high total acidity, selectivity to middle distillate was higher than the other (90%). Moreover, the Ni-Mo/10B-30USY catalyst in hydrocracking of n-hexadecane had a higher yield (82%) and was more selective to heavier products (C9–C12). The findings indicated that in the Ni-Mo/10B-30USY catalyst, coke content was more than the other due to high acidity.


Author(s):  
M I Farakhov ◽  
A G Laptev ◽  
T M Farakhov ◽  
A A Akhmitshin
Keyword(s):  

Author(s):  
Tareq A. Al-Attas ◽  
Rahima A. Lucky ◽  
Mohammed Mozahar Hossain
Keyword(s):  
Gas Oil ◽  

Author(s):  
Anton Alvarez-Majmutov ◽  
Sandeep Badoga ◽  
Jinwen Chen ◽  
Jacques Monnier ◽  
Yi Zhang
Keyword(s):  
Gas Oil ◽  

2013 ◽  
Vol 27 (6) ◽  
pp. 3306-3315 ◽  
Author(s):  
Jinwen Chen ◽  
Hena Farooqi ◽  
Craig Fairbridge

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4122
Author(s):  
Sarah A. Alkhalaf ◽  
Ahmed R. Ramadan ◽  
Christian Obuekwe ◽  
Ashraf M. El Nayal ◽  
Nasser Abotalib ◽  
...  

We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.


Sign in / Sign up

Export Citation Format

Share Document