Thermocatalytic Decomposition of Methane on Carbon Materials and Its Use in Hydrogen Energy Technologies

2021 ◽  
Vol 13 (3) ◽  
pp. 244-251
Author(s):  
A. R. Osipov ◽  
I. A. Sidorchik ◽  
D. A. Shlyapin ◽  
V. A. Borisov ◽  
N. N. Leont’eva ◽  
...  
2020 ◽  
Vol 92 (8) ◽  
pp. 1305-1320 ◽  
Author(s):  
Yulia H. Budnikova ◽  
Vera V. Khrizanforova

AbstractNowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]22+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


2017 ◽  
pp. 121-138 ◽  
Author(s):  
Antonella Petrillo ◽  
Fabio De Felice ◽  
Elio Jannelli ◽  
Mariagiovanna Minutillo

Sign in / Sign up

Export Citation Format

Share Document