Thermoelectric Properties of Textured Materials Based on Bismuth Telluride with Nanograined and Micrograined Structures Prepared by Spark Plasma Sintering

2021 ◽  
Vol 16 (3) ◽  
pp. 316-322
Author(s):  
O. N. Ivanov ◽  
M. N. Yaprintsev ◽  
A. E. Vasil’ev ◽  
N. I. Repnikov
2020 ◽  
Vol 20 (6) ◽  
pp. 3902-3908
Author(s):  
Sandeep K. Pundir ◽  
Sukhvir Singh ◽  
Parveen Jain

Thermoelectric properties of high energy ball milled nano structured bismuth telluride (Bi2Te3) have been reported. By high energy ball milling, alloyed bulk crystalline ingots crush into nanopowder and followed by spark plasma sintering (SPS), we have demonstrate high figure of merit (ZT) in bismuth telluride pellet samples. In this work systematic study carried out on three pellet samples of Bi2Te3, synthesized by high ball milling for the time period of 4 hours, 8 hours and 12 hours and followed by SPS at the same processing parameters. A peak value of dimensionless figure of merit of about 1.22 at the temperature of 473 K has been achieved for 8 hours ball milled pellet sample. This enhancement in ZT value is mostly due to decrease in thermal conductivity. Results of this study demonstrate that ball milling and SPS has a major effect in controlling the density of grain boundaries of Bi2Te3 nano particles, while the pressure exerted on the powder samples during SPS introduce stress at the boundaries of the crystallites. These disordered crystallite boundary regions exert scattering of thermal energy carriers which reduced the thermal conductivity of the materials.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2993
Author(s):  
Dong-won Shin ◽  
Peyala Dharmaiah ◽  
Jun-Woo Song ◽  
Soon-Jik Hong

In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.


2015 ◽  
Vol 195 ◽  
pp. 45-49 ◽  
Author(s):  
Koya Arai ◽  
Asumi Sasaki ◽  
Yuto Kimori ◽  
Miharu Iida ◽  
Tomoyuki Nakamura ◽  
...  

2014 ◽  
Vol 2 (38) ◽  
pp. 15829-15835 ◽  
Author(s):  
Kriti Tyagi ◽  
Bhasker Gahtori ◽  
Sivaiah Bathula ◽  
A. K. Srivastava ◽  
A. K. Shukla ◽  
...  

Intrinsically ultra-low thermal conductivity and electrical transport in single-phase Cu2SbSe3 synthesized employing a solid state reaction and spark plasma sintering.


2016 ◽  
Vol 37 (1-4) ◽  
pp. 66-72 ◽  
Author(s):  
Xing Tan ◽  
Jin-Le Lan ◽  
Yao-Chun Liu ◽  
Guang-Kun Ren ◽  
Cheng-Cheng Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document