1H NMR spectra of some chloro-alkenes

1981 ◽  
Vol 46 (11) ◽  
pp. 2924-2934
Author(s):  
Seán Cawley ◽  
Jan Schraml ◽  
Petr Svoboda ◽  
Robert Ponec ◽  
Václav Chvalovský

1H NMR spectra and electric dipole moments of a series of propene derivatives, (CH3)3-nCln.CCH=CH2 (n = 0-3), were measured and the spectra analyzed. Discrepancies in literature data on compounds with n = 0 and 3 are probably due to systematic spectrometer errors. Vinylic proton chemical shifts are found to vary linearly with n in the direction expected on the electronegativity ground (the variations with n occurs in the order HA > HB ≥ HC). Calculations show that even with the extreme reported values of C-C and C-Cl bond magnetic anisotropies, the shift variations with n cannot be accounted for by magnetic anisotropy effects of a freely rotating (CH3)3-nClnC group. Similar calculations rule out electric field effects as the dominant factor. On the other hand, the electron charge distribution, as obtained from CNDO/2 calculations, including d-orbitals and employing Del Bene-Jaffé parametrization, is linearly related to the vinylic proton shifts. This finding supports the earlier interpretation of NMR spectra of vinylsilanes in terms of back-bonding. The vinyl proton-proton coupling constants decrease with increasing n, the changes being larger in the constants which couple proton A (cis) to the other two.

RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36858-36864 ◽  
Author(s):  
Yang Li

The 13C NMR spectra and vicinal proton–proton coupling constants of two tricyclic macrolactone natural products were analyzed using computational methods, which resulted in their structural revisions.


1991 ◽  
Vol 69 (7) ◽  
pp. 1039-1046 ◽  
Author(s):  
Ted Schaefer ◽  
Kerry J. Cox ◽  
Rudy Sebastian

The 1H nuclear magnetic resonance spectra of 2-cyanobenzaldehyde (2CNB) and 3-cyanobenzaldehyde (3CNB) in CS2/C6D12 and acetone-d6 solutions at 300 K yield precise stereospecific long-range proton–proton coupling constants. These are used to establish the conformational population of the o-cis and o-trans conformers of these relatively polar molecules. For example, the fractional o-cis population of 2CNB changes from 0.12(4) in CS2/C6D12 to 0.46(6) in acetone-d6, whereas that of 3CNB is 0.48(2) in both solvents. Extrapolation to the vapor phase, using a dielectric model, implies a negligible concentration of the o-cis conformer of 2CNB and a roughly 50% abundance of each conformer of 3CNB. Computations at various levels of molecular orbital theory provide estimates of the rotational barrier of the aldehyde moiety and confirm the planar structure of each conformer. The geometries of three conformers are given as obtained from the 6-31G MO basis and may be useful to molecular spectroscopists. Theoretical and experimental dipole moments are interpolated to yield estimates of their magnitudes for the four planar conformers. Somewhat less precise 1H nmr spectral parameters (than for the above solutions) are also obtained for dilute solutions in benzene-d6 at 300 K. The conformational distributions based on these parameters are compared with their only other measurement, based on dipolar moments in benzene at 298 K. Good agreement between the results of the two methods is found for 3CNB but not for 2CNB. It is suggested that specific interactions occur between benzene solvent and solute molecules, particularly for 3CNB, for which these interactions stabilize the conformer having a low dipole moment. Remarkable changes in the intraring proton–proton coupling constants occur in going from CS2/C6D12 to acetone-d6 solution. Key words: 2- and 3-cyanobenzaldehyde (2CNB and 3CNB): 1H NMR, conformations, long-range spin–spin coupling constants, MO computations.


1983 ◽  
Vol 48 (7) ◽  
pp. 1829-1841 ◽  
Author(s):  
Jan Schraml ◽  
Eva Petráková ◽  
Otomar Pihar ◽  
Ján Hirsch ◽  
Václav Chvalovský

All possible mono-, di-, and tri- O-methyl, O-benzyl, O-benzoyl, and O-acetyl derivatives of methyl β-D-xylopyranoside were fully trimethylsilylated and their 1H and 13C NMR spectra measured in deuteriochloroform solutions. The spectra were analysed and the chemical shifts completely assigned on the basis of decoupling experiments. The proton-proton coupling constants vary only very little throughout the series. Conformer population analysis by the method of average coupling constants shows that trimethylsilylation increases the C1 conformer population and makes the series conformationally homogenous. Owing to this conformational homogeneity chemical shifts (both 1H and 13C) satisfy very well direct additivity rule. It is suggested that pertrimethylsilylation should be employed whenever deviations from chemical shift additivity are caused by conformational mobility of the investigated series of compounds and when bulky groups can stabilize one of the conformers.


1981 ◽  
Vol 36 (1-2) ◽  
pp. 126-134 ◽  
Author(s):  
Zygmunt Kazimierczuk ◽  
Ryszard Stolarski ◽  
Lech Dudycz ◽  
David Shugar

Abstract The 4,6-dibromo-and 5,7-dibromo-derivatives of 1-β-ᴅ-ribofuranosylbenzimidazole, and the 4,6-dibromo-derivative of 1-α-ᴅ-arabinofuranosylbenzimidazole, have been synthesized by condensation of the trimethylsilylated derivative of 4,6-dibromobenzimidazole with the appro­priate protected sugar in the presence of SnCl4. Application of the fusion method led to the β-ribofuranoside of 2-methyl-5,6-dichlorobenzimidazole. Two additional analogues of the biologi­cally active ribofuranoside of 5,6-dichlorobenzimidazole, viz. the 2′,3′-O-isopropylidene and the 5′-chloro-5′-deoxy derivatives have been synthesized. Analyses of the 1H NMR spectra of the foregoing, and of previously synthesized 5(6)-mono-halogeno and 5,6-dihalogeno derivatives, were employed to determine solution conformations of these nucleosides. Conformations of the sugar rings and exocyclic groups were evaluated from vicinal proton-proton coupling constants, as for purine nucleosides. The conformation of the benzimidazole ring about the glycosidic bond was determined from the chemical shifts of the sugar protons, principally H(2′), with the aid of model analogues in fixed syn and anti conforma­tions; and, independently, from the chemical shifts of the benzimidazole ring protons, principally H(4) and H(7). The halogenated benzimidazole ribofuranosides exhibit conformations of the sugar ring similar to those for purine β-nucleosides, but differ from the latter in their preference for the conformation syn about the glycosidic bond.


1993 ◽  
Vol 58 (1) ◽  
pp. 173-190 ◽  
Author(s):  
Eva Klinotová ◽  
Jiří Klinot ◽  
Václav Křeček ◽  
Miloš Buděšínský ◽  
Bohumil Máca

Reaction of 3β-acetoxy-21,22-dioxo-18α,19βH-ursan-28,20β-olide (IIIa) and 20β,28-epoxy-21,22-dioxo-19α,19βH-ursan-3β-yl acetate (IIIb) with diazomethane afforded derivatives XII-XIV with spiroepoxide group in position 21 or 22, which were further converted into hydroxy derivatives XV and XVII. Ethylene ketals VIII-X were also prepared. In connection with the determination of position and configuration of the functional groups at C(21) and C(22), the 1H and 13C NMR spectral data of the prepared compounds are discussed. Complete analysis of two four-spin systems in the 1H NMR spectrum of bisethylenedioxy derivative Xb led to the proton-proton coupling constants from which the structure with two 1,4-dioxane rings condensed with ring E, and their conformation, was derived.


1974 ◽  
Vol 29 (12) ◽  
pp. 1902-1906 ◽  
Author(s):  
Jukka Jokisaari

The 100 MHz spectra of the phenyl protons in 2-(3-chlorophenyl) oxetane and 2-(2-chlorophenyl) oxetane have been analysed. The 60 MHz PMR chemical shifts and proton-proton coupling constants have been studied in the temperature range from -20 C to +80 °C. The chemical shifts were sensitive to temperature, while the coupling constants were not, except the long range 5Jm coupling constant between the methine proton and the meta positioned phenyl proton in 2-(2-chlorophenyl) oxetane.


1979 ◽  
Vol 57 (23) ◽  
pp. 3168-3170 ◽  
Author(s):  
Henk Hiemstra ◽  
Hendrik A. Houwing ◽  
Okko Possel ◽  
Albert M. van Leusen

The 13C nmr spectra of oxazole and eight mono- and disubstituted derivatives have been analyzed with regard to the chemical shifts and the various carbon–proton coupling constants of the ring carbons. The data of the parent oxazole are compared with thiazole and 1-methylimidazole.


1979 ◽  
Vol 44 (6) ◽  
pp. 1949-1964 ◽  
Author(s):  
Miloš Buděšínský ◽  
Tomáš Trnka ◽  
Miloslav Černý

The 1H NMR spectra of 1,6-anhydro-β-D-hexopyranoses and their triacetates, measured in hexadeuteriodimethyl sulfoxide or deuteriochloroform, confirmed the existence of these compounds in 1C4(D) conformations, with the pyranose ring partly planarized in dependence on the configuration of the substituents in positions C(2), C(3) and C(4). The effects of the substituents on the chemical shifts and the adjusted relationship for the dependence of vicinal coupling constants on the torsion angle are discussed in detail from the point of view of the determination of the configuration and the conformation of 1,6-anhydro-β-D-hexopyranoses and their derivatives. The 1H NMR spectra of triacetates were also measured in the presence of the lanthanide shift reagent, tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione) europium (III) [Eu.(FOD)3].


1970 ◽  
Vol 48 (13) ◽  
pp. 2134-2138 ◽  
Author(s):  
Y. L. Chow ◽  
S. Black ◽  
J. E. Blier ◽  
M. M. Tracey

The geminal coupling constants between the non-equivalent benzylic protons of a series of para- and meta-substituted N-benzyl-2-methylpiperidines were shown to be proportional to the Hammett σ constants of the substituents with ρ −1.38 in carbon tetrachloride, −1.21 in benzene, and nearly 0 in 1 N DCl solutions. The ρ values were compared with those of other series and were discussed in terms of the possible conformations involved. The chemical shifts of the benzylic protons of the piperidine derivatives did not give a good correlation with the Hammett σ constants in these solvents.


Sign in / Sign up

Export Citation Format

Share Document