The conformational distribution of 2-cyanobenzaldehyde and 3-cyanobenzaldehyde in solution and in the vapor

1991 ◽  
Vol 69 (7) ◽  
pp. 1039-1046 ◽  
Author(s):  
Ted Schaefer ◽  
Kerry J. Cox ◽  
Rudy Sebastian

The 1H nuclear magnetic resonance spectra of 2-cyanobenzaldehyde (2CNB) and 3-cyanobenzaldehyde (3CNB) in CS2/C6D12 and acetone-d6 solutions at 300 K yield precise stereospecific long-range proton–proton coupling constants. These are used to establish the conformational population of the o-cis and o-trans conformers of these relatively polar molecules. For example, the fractional o-cis population of 2CNB changes from 0.12(4) in CS2/C6D12 to 0.46(6) in acetone-d6, whereas that of 3CNB is 0.48(2) in both solvents. Extrapolation to the vapor phase, using a dielectric model, implies a negligible concentration of the o-cis conformer of 2CNB and a roughly 50% abundance of each conformer of 3CNB. Computations at various levels of molecular orbital theory provide estimates of the rotational barrier of the aldehyde moiety and confirm the planar structure of each conformer. The geometries of three conformers are given as obtained from the 6-31G MO basis and may be useful to molecular spectroscopists. Theoretical and experimental dipole moments are interpolated to yield estimates of their magnitudes for the four planar conformers. Somewhat less precise 1H nmr spectral parameters (than for the above solutions) are also obtained for dilute solutions in benzene-d6 at 300 K. The conformational distributions based on these parameters are compared with their only other measurement, based on dipolar moments in benzene at 298 K. Good agreement between the results of the two methods is found for 3CNB but not for 2CNB. It is suggested that specific interactions occur between benzene solvent and solute molecules, particularly for 3CNB, for which these interactions stabilize the conformer having a low dipole moment. Remarkable changes in the intraring proton–proton coupling constants occur in going from CS2/C6D12 to acetone-d6 solution. Key words: 2- and 3-cyanobenzaldehyde (2CNB and 3CNB): 1H NMR, conformations, long-range spin–spin coupling constants, MO computations.

1969 ◽  
Vol 47 (21) ◽  
pp. 4005-4010 ◽  
Author(s):  
S. S. Danyluk ◽  
C. L. Bell ◽  
T. Schaefer

The long-range proton–proton coupling constants between the ring protons and the aldehydic proton are reported for a series of para-substituted benzaldehyde derivatives. It was found that JoH,CHO < 0 and JmH,CHO > 0. Furthermore, JoH,CHO increases in magnitude as the electron donating power of the sub-stituent increases. A similar trend is observed forJmH,CHO but the ratio of the increase to the magnitude of JmH,CHO is much less than for JoH,CHO. A good correlation is obtained between JoH,CHO and the sub-stituent parameters of Swain and Lupton.The coupling constant data are discussed in terms of σ and π coupling mechanisms and it is concluded that σ electron mechanisms are dominant for both JoH,CHO and JmH,CHO.


1989 ◽  
Vol 67 (6) ◽  
pp. 1022-1026 ◽  
Author(s):  
Ted Schaefer ◽  
Craig S. Takeguchi

The 1H nuclear magnetic resonance spectral parameters are reported for benzylidene diacetate in CS2 and acetone-d6 solutions. The long-range spin–spin coupling constant over six formal bonds, 6J, is used to derive apparent twofold barriers to rotation about the exocyclic C(1)—C bond in the two solutions. The conformation of lowest energy has the α. C—H bond in the benzene plane. The barrier is higher in CS2 than in acetone-d6 solution, in contrast to a molecule like benzyl chloride. In the 2,6-dibromo derivative, the free energy of activation for reorientation about the bond in question is 36 kJ/mol at 165 K in dimethyl ether solution. Such a high barrier implies a very small six-bond proton–proton coupling constant for this derivative because 6J is proportional to the expectation value of sin2θ. The angle θ is zero when the α C—H bond lies in the benzene plane. 6J is −0.051 Hz in acetone-d6 solutions; its sign is determined by double resonance experiments. The question of an angle-independent component of 6J, that is, whether 6J is finite at θ = 0°, is addressed. A maximum magnitude of 0.02 Hz may be present at θ = 0° for the 2,6-dibromo derivative, although a zero magnitude is also compatible with the experimental data. In a compound with a higher internal barrier, α,α,2,6-tetrachlorotoluene, the experimental results are best in accord with a negligibly small 6J at θ = 0°. Keywords: 1H NMR of benzylidene diacetate, spin–spin coupling constants for benzylidene diacetate, DNMR, 2,6-dibromobenzylidene diacetate.


1969 ◽  
Vol 47 (9) ◽  
pp. 1507-1514 ◽  
Author(s):  
T. Schaefer ◽  
S. S. Danyluk ◽  
C. L. Bell

The signs of all proton–proton and proton–fluorine spin–spin coupling constants in 2-fluoro-3-methylpyridine have been determined by double and triple resonance experiments. The signs of the longrange coupling constants, JH,CH3 and JF,CH3 are the same as in fluorotoluene derivatives. Their magnitudes are consistent with the assumption that the nitrogen atom primarily polarizes the σ bonds in the molecule, leaving the π contribution to the long-range coupling relatively unaffected.


1991 ◽  
Vol 69 (6) ◽  
pp. 927-933 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Christian Beaulieu

The inversion potentials, obtained from STO-3G, STO-3G(*), 3-21G, 3-21G(*), and 4-31G basis sets, are reported for thianthrene and thioxanthene, molecules in which both or only one of the methylene groups have been replaced by sulfur in 9,10-dihydroanthracene. Comparison with the available experimental data suggests that the split-valence bases lead to an overestimate, possibly by about 10 kJ/mol, of the inversion barrier in the crystal, whereas the STO-3G and STO-3G* basis sets underestimate this barrier. It appears that the inversion barrier for thianthrene is much lower in solution than in the crystal. The long-range coupling constants between the methylene and ring protons for thioxanthene in solution are consistent with an inversion barrier somewhat smaller than those obtained with the split-valence bases but rather larger than those predicted with the STO-3G basis set. The bond lengths and angles in the equilibrium structures of the two molecules, as computed with the 3-21G(*) basis, agree reasonably well with those in their crystals, except that the theoretical folding angles are smaller than measured. These discrepancies become less marked when expectation values are calculated from the theoretical inversion potentials at finite temperatures. Key words: MO calculations, inversion potentials of thianthrene and thioxanthene; 1H NMR, thioxanthene; spin–spin coupling constants, long range, in thioxanthene.


1976 ◽  
Vol 54 (20) ◽  
pp. 3216-3223 ◽  
Author(s):  
William J. E. Parr ◽  
Roderick E. Wasylishen ◽  
Ted Schaefer

The stereospecific spin–spin coupling constants over five bonds between the α-proton in the side chain and the protons in the heterocycle in 2-vinylfuran, in its β-nitro and β-aldehydic derivatives, and in 2-vinylthiophene are used to demonstrate the preponderance of the s-trans conformers in polar and nonpolar solutions. These conclusions are compared with predictions made by molecular orbital theory at the STO-3G, INDO, CNDO/2, and MINDO/3 levels. Long-range coupling constants between the protons in the side chain and protons in the heterocycle are calculated by CNDO/2 and INDO–MO–FPT and are compared with experiment. It is concluded that the five-bond couplings involving the α-proton are most sensitive to conformation and that they are transmitted mainly via a σ electron mechanism. The other long-range coupling constants are discussed in terms of σ and π electron mechanisms. The STO-3G calculations yield barriers to internal rotation of greater than 4.8 kcal/mol.


1983 ◽  
Vol 61 (1) ◽  
pp. 26-28
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

The 1H nmr spectral parameters are extracted for a 4 mol% solution of 2-methylthiobenzaldehyde in CCl4 at 305 K. The long-range spin–spin coupling constants involving the aldehydic and methyl protons are consistent only with a preferred conformation in which all heavy atoms are coplanar, as are the chemical shifts of the ring and methyl protons. This conclusion contradicts previous interpretations of the dipole moment, the nmr parameters, and of the infrared data for CCl4 solutions. The present data show that the O-syn and O-anti forms of the compound are present in roughly equal proportions.


1985 ◽  
Vol 63 (9) ◽  
pp. 2471-2475 ◽  
Author(s):  
Ted Schaefer ◽  
James D. Baleja ◽  
Glenn H. Penner

The twofold internal barriers to rotation about the C—S bond in 3,5-diX-thiophenols were determined in solution from long-range spin–spin coupling constants. They are 3.4, 4.85, 5.3, 6.45, and 7.25 ± 10% kJ/mol for X = H, CH3, OCH3, F, and Cl, respectively. In 3,5-dichloro-4-hydroxythiophenol, V2 is −0.8 kJ/mol as compared to −1.9 kJ/mol in 4-methoxythiophenol. The para substituent here dominates. The observed barriers are in rough agreement with arguments based on perturbation molecular orbital theory and with MO calculations of changes in the barrier caused by substituents. The computed values appear as nearly pure twofold barriers with very small fourfold components.


1972 ◽  
Vol 50 (16) ◽  
pp. 2710-2712 ◽  
Author(s):  
R. Wasylishen ◽  
T. Schaefer

Molecular orbital theory at the INDO level of approximation is used to calculate the Fermi contact contribution to three-bond carbon–proton coupling constants in propane. The calculations predict a dihedral angle dependence of 3J(13C,H) in the 13C—C—C—H fragment similar to that observed for 3J(H,H), 3J(19F,H), and for 3J(31P,H) in the saturated X—C—C—H fragments.


Sign in / Sign up

Export Citation Format

Share Document