Characterization of the sulfated glycopeptide of chicken pepsinogen

1982 ◽  
Vol 47 (2) ◽  
pp. 709-718 ◽  
Author(s):  
Miroslav Baudyš ◽  
Vladimír Kostka ◽  
Karel Grüner ◽  
Jan Pohl

S-sulfonated chicken pepsinogen was digested with TPCK-trypsin; large tryptic peptides, separated on Sephadex G-25 fine, were subjected to additional cleavage with α-chymotrypsin. The hold-up fraction of the chymotryptic digest from the Sephadex G-25 column, was resolved by high voltage electrophoresis. The three most acidic zones contained glycopeptides of identical amino acid sequence Val-Ser-Thr-Asn-Glu-Thr-Val-Tyr, yet differed in the composition of the sugar moiety. These glycopeptides, moreover, bear different numbers of sulfate groups which enabled the resolution of the peptides. The most acidic glycopeptide contains 7 glucosamine residues, 3 mannose residues and 5 sulfate groups, the second one 6 glucosamine residues, 3 mannose residues and 4 sulfate groups and the slowest, minority glycopeptide, 5 glucosamine residues, 2 mannose residues and 2 sulfate groups. The entire sugar moiety is attached to one of the chain viaasparagine. In other experiments the glycopeptides were also isolated from the thermolytic digest of chicken pepsin; their C-terminal sequence was shorter by two amino acid residues. The tentative assignment of the glycopeptides to the amino acid sequence of pepsinogen resulted from the analysis of the limited tryptic digest of the whole protein molecule. Chicken pepsinogen is glycosylated at the site of the chain occupied by a phosphoserine residue in hog pepsinogen A.

1992 ◽  
Vol 286 (3) ◽  
pp. 761-769 ◽  
Author(s):  
F P Barry ◽  
J U Gaw ◽  
C N Young ◽  
P J Neame

The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.


1976 ◽  
Vol 54 (10) ◽  
pp. 902-914 ◽  
Author(s):  
Anne Cunningham ◽  
Hsin-Min Wang ◽  
Stephen R. Jones ◽  
Alexander Kurosky ◽  
Leticia Rao ◽  
...  

The digest of penicillopepsin (EC 3.4.23.7) with protease II from Myxobacter AL-1 gave five fragments which were separated on a Biogel P-100 column in 70% formic acid. The fragments were from 16 to 125 amino acids long. Two fragments were also isolated from a digest with a protease from Staphylococcus aureus. The analysis of these fragments by automatic sequencer gave a number of overlaps of the chymotryptic and thermolytic peptides. The available amino acid sequence data for penicillopepsin described in this paper and the accompanying papers (Kurosky, A. &Hofmann, T.: Can. J. Biochem. 54, 872 (1976); Rao, L. &Hofmann, T.: Can. J. Biochem. 54, 885 (1976); Harris, C. I., Rao, L., Shutsa, P., Kurosky, A. &Hofmann, T.: Can. J. Biochem. 54, 895 (1976)) have been combined and yield 15 fragments which range in lengths from 3 to 112 amino acid residues. These unique fragments account for virtually all the amino acids of the fungal protease. Four of the fragments with a total of 194 residues (about 60% of the molecule) have been aligned with corresponding sections of pig pepsin (EC 3.4.23.1) and with part of the N-terminal sequence available for calf chymosin (EC 3.4.23.4). In the alignments about 37% of the residues in the fungal enzyme are identical with at least one of the mammalian enzymes. An additional 20% are chemically similar. These results, together with previously reported active-site directed modifications, show conclusively that penicillopepsin is an evolutionary homologue of the mammalian acid proteases.


1980 ◽  
Vol 185 (1) ◽  
pp. 239-243 ◽  
Author(s):  
I Takruri ◽  
D Boulter

The amino acid sequence of the ferredoxin of Brassica napus was determined by using a Beckman 890C sequencer in combination with the characterization of peptides obtained by tryptic and chymotryptic digestion of the protein; some peptides were subdigested with thermolysin. The molecule consists of a single polypeptide chain of 96 amino acid residues and has an unblocked N-terminus. The primary structure shows considerable similarity with other plant-type ferredoxins.


2002 ◽  
Vol 366 (3) ◽  
pp. 817-824 ◽  
Author(s):  
Jianxia GUO ◽  
Ludwika ZIMNIAK ◽  
Piotr ZIMNIAK ◽  
John L. ORCHARD ◽  
Shivendra V. SINGH

The present study describes the cDNA cloning, expression and characterization of a novel Mu class murine glutathione transferase (GST) isoenzyme. Screening of a cDNA library from the small intestine of a female A/J mouse using consensus probes derived from Mu class murine GST genes (mGSTM1—mGSTM5) resulted in the isolation of a full-length cDNA clone of a previously unknown Mu class GST gene (designated as mGSTM7). The choice of tissue was based on our previous identification in female A/J mouse small intestine of a potentially novel Mu class GST isoenzyme. The deduced amino acid sequence of mGSTM7, which comprises of 218 amino acid residues, exhibited about 67—78% identity with other Mu class murine GSTs. Recombinant mGSTM7-7 cross-reacted with anti-(GST Mu) antibodies, but not with anti-(GST Alpha) or anti-(GST Pi) antibodies. The pI and the reverse-phase-HPLC elution profile of recombinant mGSTM7-7 were different from those of other Mu class murine GSTs. The substrate specificity of mGSTM7-7 was also different compared with other Mu class murine GSTs. Interestingly, mGSTM7 had a higher identity with the human Mu class isoenzyme hGSTM4 (87% identity and 94% similarity in the amino acid sequence) than with any of the known mouse Mu class GSTs. Specific activities of recombinant mGSTM7-7 and human GSTM4-4 were comparable towards several substrates. For example, similar to hGSTM4-4, recombinant mGSTM7-7 was poorly active in catalysing the GSH conjugation of 1-chloro-2,4-dinitrobenzene and ethacrynic acid, and lacked activity towards 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy)propane. These results suggested that hGSTM4-4 might be the human counterpart of mouse GSTM7-7. Reverse transcription-PCR analysis using mGSTM7-specific primers revealed that mGSTM7 is widely expressed in tissues of female A/J mice, including liver, forestomach, lung, kidney, colon and spleen.


1997 ◽  
Vol 325 (2) ◽  
pp. 527-531 ◽  
Author(s):  
Naoki OHKURA ◽  
Hiroaki OKUHARA ◽  
Seiji INOUE ◽  
Kiyoshi IKEDA ◽  
Kyozo HAYASHI

Three distinct types of phospholipase A2 (PLA2) inhibitory proteins (PLIα, PLIβ, and PLIγ) were isolated from the blood plasma of the Chinese mamushi, Agkistrodonblomhoffiisiniticus. PLIα is an inhibitor that we have already purified and whose amino acid sequence we have already determined [Ohkura, Inoue, Ikeda and Hayashi (1993) J. Biochem. (Tokyo) 113, 413–419]. It inhibited selectively the group-II acidic PLA2s from Crotalidae venom. PLIβ was a 160-kDa glycoprotein having a trimeric structure composed of 50-kDa subunits. The amino acid sequence of the first 30 amino acids of the N-terminal part of the 50-kDa subunit was determined and found to have no significant homology to that of known proteins. PLIβ was a selective inhibitor against the group-II basic PLA2s from Crotalidae venom. Some amino acid residues located in or close to the interfacial binding surface of the group-II basic PLA2s were suggested to be involved in selective binding to PLIβ. PLIγ was a 100-kDa glycoprotein containing 25-kDa and 20-kDa subunits and inhibited all of the PLA2s investigated equally, including Elapidae venom PLA2s (group I), Crotalidae and Viperidae venom PLA2s (group II) and honey-bee PLA2 (group III). From the N-terminal sequences of the two subunits, PLIγ was found to be the same type of PLI that had been purified from Thailand cobra plasma.


1980 ◽  
Vol 45 (4) ◽  
pp. 1144-1154 ◽  
Author(s):  
Miroslav Baudyš ◽  
Helena Keilová ◽  
Vladimír Kostka

To determine the primary structure of the C-terminal part of the molecule of chicken pepsinogen the tryptic, chymotryptic and thermolytic digest of the protein were investigated and peptides derived from this region were sought. These peptides permitted the following 21-residue C-terminal sequence to be determined: ...Ile-Arg-Glu-Tyr-Tyr-Val-Ile-Phe-Asp-Arg-Ala-Asn-Asn-Lys-Val-Gly-Leu-Ser-Pro-Leu-Ser.COOH. A comparison of this structure with the C-terminal sequential regions of the other acid proteases shows a high degree of homology between chicken pepsinogen and these proteases (e.g., the degree of homology with respect to hog pepsinogen and calf prochymosin is about 66%). Additional tryptic peptides, derived from the N-terminal part of the zymogen molecule whose amino acid sequence has been reported before, were also obtained in this study. This sequence was extended by two residues using an overlapping peptide. An ancillary result of this study was the isolation of tryptic peptides derived from other regions of the zymogen molecule.


1989 ◽  
Vol 54 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Ivan Kluh ◽  
Ladislav Morávek ◽  
Manfred Pavlík

Cyanogen bromide fragment CB5 represents the region of the polypeptide chain of hemopexin between the fourth and fifth methionine residue (residues 232-352). It contains 120 amino acid residues in the following sequence: Arg-Cys-Ser-Pro-His-Leu-Val-Leu-Ser-Ala-Leu-Thr-Ser-Asp-Asn-His-Gly-Ala-Thr-Tyr-Ala-Phe-Ser-Gly-Thr-His-Tyr-Trp-Arg-Leu-Asp-Thr-Ser-Arg-Asp-Gly-Trp-His-Ser-Trp-Pro-Ile-Ala-His-Gln-Trp-Pro-Gln-Gly-Pro-Ser-Ala-Val-Asp-Ala-Ala-Phe-Ser-Trp-Glu-Glu-Lys-Leu-Tyr-Leu-Val-Gln-Gly-Thr-Gln-Val-Tyr-Val-Phe-Leu-Thr-Lys-Gly-Gly-Tyr-Thr-Leu-Val-Ser-Gly-Tyr-Pro-Lys-Arg-Leu-Glu-Lys-Glu-Val-Gly-Thr-Pro-His-Gly-Ile-Ile-Leu-Asp-Ser-Val-Asp-Ala-Ala-Phe-Ile-Cys-Pro-Gly-Ser-Ser-Arg-Leu-His-Ile-Met. The sequence was derived from the data on peptides prepared by cleavage of fragment CB5 by mild acid hydrolysis, by trypsin and chymotrypsin.


1990 ◽  
Vol 265 (8) ◽  
pp. 4583-4591 ◽  
Author(s):  
J D Pearson ◽  
D B DeWald ◽  
W R Mathews ◽  
N M Mozier ◽  
H A Zürcher-Neely ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document