Potentiometric Investigation of Mixed-Ligand Complexes of Co(II), Ni(II) and Zn(II) Ions with Thiosalicylic Acid and Ethylenediamine

1992 ◽  
Vol 57 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Joanna Masłowska ◽  
Józef Szmich

Formation of mixed-ligand complexes of Co(II), Ni(II) and Zn(II) ions with thiosalicylic acid (H2SR) and ethylenediamine (en) in aqueous ethanol (50 vol.%) was investigated by the potentiometric method at 298, 313 and 328 K at the ionic strength of 0.1 (NaClO4). The thermodynamic functions ∆G0, ∆H0 and ∆S0 have been evaluated at these temperatures.


1986 ◽  
Vol 64 (5) ◽  
pp. 865-870 ◽  
Author(s):  
Sudhir N. Limaye ◽  
Mahesh C. Saxena

Metal–ligand association constants of 1:1 binary (ML) and 1:1:1 ternary (MAL) complexes of the type [Formula: see text] (where M = La3+, Ce3+, Pr3+, Nd3+, or Sm3+; A = primary ligand = EDTA; L = secondary ligand = O—O, O—N, O—S donor aliphatic or aromatic ligand) have been determined potentiometrically by the Irving–Rossotti titration technique at ionic strength 0.2 (mol dm−3 NaClO4) and 25 °C. Differences between log KML and log KMAL are negative; this may be chiefly due to electrostatic repulsion between the primary binary complex and the incoming secondary ligand during the formation of the mixed-ligand complexes. The relative complexing tendencies of various secondary ligands have been found to follow the sequence O—O donor (aromatic) > O—N donor > O—O donor (aliphatic) ≥ O—S donor.



2011 ◽  
Vol 8 (2) ◽  
pp. 859-862 ◽  
Author(s):  
A. K. Mapari ◽  
K. V. Mangaonkar

Binary and ternary complexes of the type M-Y and M-X-Y [M=Co(II), Ni(II), Cu(II) and Zn(II); X=N-(2-hydroxybenzylidene)-2,3-dimethylaniline and Y =N-(2-hydroxy-1-naphthylidene)-4-nitroaniline] have been examined pH-metrically at 27±0.5 °C and at constant ionic strength, μ=0.1 M (KCl) in 75:25(v/v) 1,4-dioxne-water medium. The stability constants for binary (M-Y) and ternary (M-X-Y) systems were calculated.



1977 ◽  
Vol 32 (4) ◽  
pp. 426-429 ◽  
Author(s):  
G. S. Malik ◽  
S. P. Singh ◽  
J. P. Tandon

pH-metric studies on the interaction of Ni(II), Zn(II) or Cd(II) with 1,10-phenanthroline (Phen) or 2,2′-bipyridyl (Bipy) in the presence of phenylalanine (Phe) indicate the formation of 1:1:1 mixed ligand chelates and their monohydroxo derivatives. The addition of Phe takes place after the combination of Phen or Bipy with the metal ion is complete. The formation constants of the resulting complexes have been determined at 30 ± 1 °C and ionic strength (µ) = 0.1 KNO3 and the ternary complexes involving Phen are found to be more stable than the corresponding complexes involving Bipy as primary ligand.



2011 ◽  
Vol 8 (4) ◽  
pp. 1765-1769 ◽  
Author(s):  
N. G. Nadkarni ◽  
K. V. Mangaonkar

Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II), Ni(II), Cu(II) and Zn(II); X = salicylidene-4-methoxyaniline and Y=5-bromosalicylidene-4-nitroaniline] have been examined pH-metrically at 27±0.5 °C and at constant ionic strength, μ= 0.1 M (KCl) in 75 : 25(v/v) 1,4-dioxne-water medium. The stability constants for binary (M-Y) and ternary (M-X-Y) systems were calculated. The relative stability (Δ log KT) values of the ternary complexes with corresponding binary complexes for all the metal(II) ions in the present study found to be negative indicating that ternary 1:1:1 (M-X-Y) complexes are less stable than binary 1:1 (M-Y) complexes. In the ternary system studied, the order of stability constants of mixed ligand complexes with respect to the metal ions was found to be Cu(II) > NI(II) > Mn(II) > Zn(II); which is same as in the corresponding binary (M-Y) systems.



Author(s):  
Tahmeena Khan ◽  
Rumana Ahmad ◽  
Iqbal Azad ◽  
Saman Raza ◽  
Seema Joshi ◽  
...  

Background: Mixed ligand-metal complexes are efficient chelating agents because of flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. Objective: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2-butanone thiosemicarbazone) and pyridine, bipyridine or 2-picoline as co-ligands were synthesized with Cu, Fe and Zn. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against S. aureus and E. coli. The drug character of the complexes was evaluated on several parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and absorption, distribution, metabolism, excretion and toxicity (ADMET) profile assessment using various automated softwares. Molecular docking of the complexes was also performed with two target proteins. Method and Results: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopies. Molecular docking was performed against ribonucleotide reductase (RR) and topoisomerase II (topo II). [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski’s rules. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. Not more than two violations were obtained in case of each filtering rule showing drug like character of the mixed ligand complexes. Several of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects. All the complexes were predicted to have no mutagenic character as shown by the Ames test [Zn(C5H11N3S)(py)2(SO4)] showed potential activity against MDA. [Co(C5H11N3S(bpy)(Cl)2] was also active against MDA. [Cu(C5H11N3S)(2-pic)2(CH3COO)2] also showed 27.6% cell viability at 100 µM against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. [Co(C5H11N3S)(bpy)(Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. [Co(C5H11N3S)(2-pic)2(Cl)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] were active at lower concentrations against S.aureus. Against E. coli, [Zn(C5H11N3S)(2-pic)2(SO4)] showed activity at 18-20mg dose range.



1985 ◽  
Vol 50 (6) ◽  
pp. 1383-1390
Author(s):  
Aref A. M. Aly ◽  
Ahmed A. Mohamed ◽  
Mahmoud A. Mousa ◽  
Mohamed El-Shabasy

The synthesis of the following mixed ligand complexes is reported: [Ni(phdtc)2(dpm)2], [Ni(phdtc)2(dpe)2], [Ni(phdtc)2(dpp)3], [Ni(1-naphdtc)2(dpm)2], [Ni(1-naphdtc)2], and [Ni(1-naphdtc)2(dpp)2], where phdtc = PhNHCSS-, 1-naphdtc = 1-NaPhNHCSS-, dpm = Ph2PCH2PPh2, dpe = Ph2P(CH2)2PPh2, and dpp = Ph2P(CH2)3PPh2. The complexes are characterised by microanalysis, IR and UV-Vis spectra, magnetic measurements, conductivity, X-ray powder diffraction, and thermal analysis. All the mixed ligand complexes are diamagnetic, and thus a square-planar or square-pyramidal (low-spin) structure was proposed for the present complexes.



2021 ◽  
Vol 19 (1) ◽  
pp. 735-744
Author(s):  
Samar O. Aljazzar

Abstract Metformin is one of the most effective drugs for the treatment of type II diabetes. Two new mixed ligand complexes of vanadyl(ii) and chromium(iii) ions with the general formula [VOL1L2]SO4 and [CrL1L2(Cl)2]Cl, respectively, where L1 is the metformin and L2 is the glycine amino acid, have been synthesized in MeOH solvent with 1:1:1 stoichiometry and characterized by several spectroscopic techniques. The spectroscopic data suggested that the [VOL1L2]SO4 complex possesses a square pyramidal geometry, where the [CrL1L2(Cl)2]Cl complex possesses an octahedral geometry. The L1 ligand coordinated to the VO(ii) and Cr(iii) ions via the N atoms of the imino (‒C═NH) groups, where the L2 ligand coordinated via the O atom of the carboxylate group (COO) and the N atom of the amino group (NH2). The interaction of ligands L1 and L2 with the metal ions leads to complexes that have organized nanoscale structures with a main diameter of ∼14 nm for the [CrL1L2(Cl)2]Cl complex and ∼40 nm for the [VOL1L2]SO4 complex.



Sign in / Sign up

Export Citation Format

Share Document