Site-specific labeling of DNA base modifications for amplification of DNA damage

Author(s):  
Jan Riedl ◽  
Cynthia J. Burrows
DNA Repair ◽  
2007 ◽  
Vol 6 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Marc Bercht ◽  
Claudia Flohr-Beckhaus ◽  
Marcel Osterod ◽  
Thomas M. Rünger ◽  
J. Pablo Radicella ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 124-137 ◽  
Author(s):  
Adel Mahmoud Attia ◽  
Ahmed Ibrahin Khodair ◽  
Eman Abdelnasser Gendy ◽  
Mohammed Abu El-Magd ◽  
Yaseen Ali Mosa Mohamed Elshaier

Background:Perturbation of nucleic acids structures and confirmation by small molecules through intercalation binding is an intriguing application in anticancer therapy. The planar aromatic moiety of anticancer agents was inserted between DNA base pairs leading to change in the DNA structure and subsequent functional arrest.Objective:The final scaffold of the target compounds was annulated and linked to a benzotriazole ring. These new pharmacophoric features were examined as antiviral and anticancer agents against MCF7 and their effect on DNA damage was also assessed.Methods:A new series of fully substituted 2-oxopyridine/2-thioxopyridine derivatives tethered to a benzotriazole moiety (4a-h) was synthesized through Michael cyclization of synthesized α,β- unsaturated compounds (3a-e) with appropriate active methylene derivatives. The DNA damage study was assessed by comet assay. In silico DNA molecular docking was performed using Open Eye software to corroborate the experimental results and to understand molecule interaction at the atomic level.Results:The highest DNA damage was observed in Doxorubicin, followed by 4h, then, 4b, 4g, 4f, 4e, and 4d. The docking study showed that compound 4h formed Hydrogen Bonds (HBs) as a standard ligand with GSK-3. Compound 4h was the most active compound against rotavirus Wa, HAVHM175, and HSV strains with a reduction of 30%, 40%, and 70%, respectively.Conclusion:Compound 4h was the most active compound and could act as a prospective lead molecule for anticancer agent.


1998 ◽  
Vol 45 (2) ◽  
pp. 561-572 ◽  
Author(s):  
R Olinski ◽  
P Jaruga ◽  
T H Zastawny

Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs causes base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan M. Fogg ◽  
Allison K. Judge ◽  
Erik Stricker ◽  
Hilda L. Chan ◽  
Lynn Zechiedrich

AbstractDNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.


Biochemistry ◽  
1991 ◽  
Vol 30 (12) ◽  
pp. 3069-3075 ◽  
Author(s):  
Shosuke Kawanishi ◽  
Koji Yamamoto
Keyword(s):  

2003 ◽  
Vol 94 (8) ◽  
pp. 686-691 ◽  
Author(s):  
Hideki Mizutani ◽  
Shinji Oikawa ◽  
Yusuke Hiraku ◽  
Mariko Murata ◽  
Michio Kojima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document