scholarly journals SP0087 Tissue engineering and stem cell biology: development of bones, joints and synovium

Author(s):  
N Zvaifler
2018 ◽  
pp. 1402-1423
Author(s):  
Martin Reinhardt ◽  
Shibashish Giri ◽  
Augustinus Bader

Currently, practical application of nanotechnological approaches and stem cell therapies remains a challenge in both preclinical and clinical settings. Many existing problems in tissue engineering to organ engineering have been solved by the combined approaches of nanotechnology and stem cell biology, but significant barriers remain. Details about the role of various types of nanomaterial in preclinical and clinical research have been reviewed elsewhere, but scant information exists about the influence of nanomaterials on stem cell biology. Herein, the authors highlight the current advances of nanotechnological approaches for expansion, differentiations, harvesting, labeling, imagining, tissue engineering, and organ engineering of different types of stem cells. The preclinical outcome of in vitro and in vivo animal experimentations along with some examples of clinical outcomes of nanomaterials on stem cell research is the main focus of this chapter. This book chapter might be an impetus for the present generation of young scientists to revolutionize the coming generation of effective human healthcare.


2014 ◽  
Vol 38 (9) ◽  
pp. 1819-1824 ◽  
Author(s):  
Marco Mravic ◽  
Greg Asatrian ◽  
Chia Soo ◽  
Claire Lugassy ◽  
Raymond L. Barnhill ◽  
...  

2014 ◽  
Vol 6 (245) ◽  
pp. 245sr2-245sr2 ◽  
Author(s):  
Sangeeta N. Bhatia ◽  
Gregory H. Underhill ◽  
Kenneth S. Zaret ◽  
Ira J. Fox

Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.


Author(s):  
Ajaykumar Vishwakarma ◽  
Paul Sharpe ◽  
Songtao Shi ◽  
Murugan Ramalingam

2018 ◽  
Vol 2 (1) ◽  
pp. 3-5
Author(s):  
Mridha Sharma ◽  
Kirandeep Kaur

The human body is an intricate system consisting of numerous cells and tissues working in an organized fashion for the sustenance of life and stem cell biology become an important field for the understanding of tissue regeneration and implementation of regenerative medicine. Stem cells have capability of replicating themselves and can be readily available at the time of a planned procedure. Furthermore, it’s been shown that these cells have high potential to serve as resources not for medical therapies and tissue engineering, but also for dental or bone reconstruction. Stem cell research is not merely a science fiction but has rather opened the door for future treatment modalities.


Author(s):  
Martin Reinhardt ◽  
Shibashish Giri ◽  
Augustinus Bader

Currently, practical application of nanotechnological approaches and stem cell therapies remains a challenge in both preclinical and clinical settings. Many existing problems in tissue engineering to organ engineering have been solved by the combined approaches of nanotechnology and stem cell biology, but significant barriers remain. Details about the role of various types of nanomaterial in preclinical and clinical research have been reviewed elsewhere, but scant information exists about the influence of nanomaterials on stem cell biology. Herein, the authors highlight the current advances of nanotechnological approaches for expansion, differentiations, harvesting, labeling, imagining, tissue engineering, and organ engineering of different types of stem cells. The preclinical outcome of in vitro and in vivo animal experimentations along with some examples of clinical outcomes of nanomaterials on stem cell research is the main focus of this chapter. This book chapter might be an impetus for the present generation of young scientists to revolutionize the coming generation of effective human healthcare.


2019 ◽  
Vol 30 (2) ◽  
pp. 50-56 ◽  
Author(s):  
Q.Z. Zhang ◽  
C. Chen ◽  
M.B. Chang ◽  
R.M. Shanti ◽  
S.B. Cannady ◽  
...  

Tissue injuries in the oral and maxillofacial structures secondary to trauma, warfare, ablative cancer, and benign tumor surgery result in significant losses of speech, masticatory and swallowing functions, aesthetic deformities, and overall psychological stressors and compromise. Optimal oral rehabilitation remains a formidable challenge and an unmet clinical need due to the influence of multiple factors related to the physiologic limitations of tissue repair, the lack of site and function-specific donor tissues and constructs, and an integrated team of multidisciplinary professionals. The advancements in stem cell biology, biomaterial science, and tissue engineering technologies, particularly the 3-dimensional bioprinting technology, together with digital imaging and computer-aided design and manufacturing technologies, have paved the path for personalized/precision regenerative medicine. At the University of Pennsylvania, we have launched the initiative to integrate multidisciplinary health professionals and translational/clinical scientists in medicine, dentistry, stem cell biology, tissue engineering, and regenerative medicine to develop a comprehensive, patient-centered approach for precision and personalized reconstruction, as well as oral rehabilitation of patients sustaining orofacial tissue injuries and defects, especially oral cancer patients.


Sign in / Sign up

Export Citation Format

Share Document