Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering - Advances in Chemical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

30
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By IGI Global

9781466663633, 9781466663640

Author(s):  
Priti Talwar ◽  
Madhumathi Manickam ◽  
Namrata Chaudhari ◽  
Palaniyandi Ravanan

In recent years, nanotechnology-based studies have been employed in the area of systems biology. The current chapter aims to give a concise view of this emergent field of research, namely nano systems biology. A large number of such studies are based on understanding surface reactivities of a biological system. Another stream of studies is focused on imaging approaches using nano systems biology. In this chapter, the authors also illustrate state-of-the-art work using these approaches in nanomedicine.


Author(s):  
Gulnaz T. Javan

When Dr. Richard Feynman first gave the good news in 1959 that nanotechnology was on its way to change or perhaps transform the world of technology, many people might have considered his concepts too futuristic to be realized. Criminals, on the other hand, would not have known how effective nanotechnological tools would become in solving crimes in a few decades. Among some of the medical applications of the technology are drug production, diagnostics, and production of medical as well as forensic tools and devices. Forensic science can be described as the sum of scientific tests or techniques used in the investigation of crimes. This chapter is, therefore, aimed at introducing and discussing nanotechnology as applied in forensic science along with instrumentation used in performing nano-analysis. The future prospects of the technology as employed in forensic science and toxicity of nanomaterials are also dealt with in this chapter.


Author(s):  
C. Y. Torres López ◽  
J. J. Pérez Bueno ◽  
I. Zamudio Torres ◽  
M. L. Mendoza-López ◽  
J. E. Urbina Álvarez ◽  
...  

This chapter shows the experimental findings on preparing TiO2 nanotubes by anodizing titanium into an organic medium for an intended use as a fotocatalytic active electrode in treating water polluted with organic contaminants. The substrates were grit blasted in order to obtain mechanical fixation of the generated nanotubular TiO2 structure. This was successfully achieved without diminishment of the nanotubes order and with a self-leveled outer surface. A new phenomenon occurred when detached fragments from the modified layer were electrophoretically deposited. They were ordered and grow as deposits. In addition, they maintain their nanotubular shape conferring a homogeneous size in the porous structure.


Author(s):  
Akhilesh Kumar Shakya ◽  
Kutty Selva Nandakumar

Evaluation of immuno-modulating properties of nanomaterials is important to develop new potential therapeutics for inflammatory diseases and cancer. Activation and suppressive effects of nanomaterials on immune responses occur through various interactions with different host proteins. They can also be engineered as carriers and/or adjuvants for different proteins or antigens. Particles, emulsions, and tubes/rods are the major formats of nanomaterials currently used in biomedical applications. Sometimes, nanomaterials induce side effects like undesired immunosuppression and toxicities, which are major concerns at present in designing optimal nanotherapeutics. This chapter summarizes different types of nanomaterials and their effect on immune responses.


Author(s):  
Roy Gaurab ◽  
Shetti Dattatrya ◽  
Yadav Amit ◽  
Kundu Gopal C

Nanomedicine, an offshoot of nanotechnology, is considered as one of the most promising technologies of the 21st century. Due to their minute size, nanomedicines can easily target difficult-to-reach sites with improved solubility and bioavailability and reduced adverse effects. They also act as versatile delivery systems, carrying both chemotherapeutics and imaging agents to targeted sites. Hence, nanomedicine can be used to achieve the same therapeutic effect at smaller doses than their conventional counterparts and can offer impressive resolutions for various life-threatening diseases. Although certain issues have been raised about the potential toxicities of nanomaterials, it is anticipated that the advances in nanomedicine will furnish clarifications to many of modern medicine's unsolved problems. This chapter aims to provide a comprehensive and contemporary survey of various nanomedicine products along with the major risks and side effects associated with the nanoparticles.


Author(s):  
Cajetan M. Akujuobi

The 21st century has seen a massive explosion in the applications of nanotechnology. These applications cover all areas of Science, Technology, Engineering, and Mathematics (STEM). The advantage of nanotechnology comes from the fact that it has revolutionized the miniaturizations of many products that are useful to the well-being of society. A typical nanotechnology application example in biomedical engineering is its usage as drug eluting interfaces for implantable devices, such as vascular stents, orthopedic implants, and dental implants. The purpose of this chapter is to discuss the various applications of nanotechnology to biomedical engineering. Some of the future nanotechnology applications in biomedical engineering include healthcare/medical, consumer medical goods, environmental, and electronics. The impact of nanotechnology applications to biomedical engineering is in many ways enabling humans to survive different ailments that otherwise could have been very difficult to manage. The safety aspects in the applications of nanotechnology to biomedical engineering are also examined.


Author(s):  
Rana Singleton ◽  
Carrie Sanders ◽  
Alain B. Waffo

To date, the phage display system has enabled the discovery of material binding peptides. Diversity and functionality of these peptides could be improved using RNA-based display systems instead of the conventional DNA-based ones. RNA phage replication systems possess unique features that make them a versatile tool for any combinatory approach and evolutionary application. Phage display was used to monitor the chemical surface properties and to initiate nanoparticle assembly. Novel bio-panning was recently used in RNA-based display to screen new functionality without acidic elution used in other conventional DNA phage display systems. Therefore, Hybrid RNA phages would be a perfect platform for attachment and exploration of nanoparticles. In this chapter, the authors present an overview on research conducted on these cross fields and areas. They not only focus on the novel selection and amplification process but also on the importance of RNA phage and its peptide display as tools for preventing nanoparticle aggregation.


Author(s):  
Salim Barbhuiya ◽  
Muneeb Qureshi

The properties of concrete are strongly influenced by the properties of its components and hydrates at the nanoscale. Therefore, application of nanotechnology in cement and concrete science will engender new opportunities for improvement of strength and durability of concrete. The objective of this chapter is to advance the science and engineering of nanotechnology in modifying and monitoring the behaviour and performance of cement and concrete at the nanoscale. The chapter assists in the identification of promising new research and innovations in concrete materials using nanotechnology that can result in improved mechanical properties, volume change properties, durability, and sustainability. The chapter also provides a unique base for scientists, engineers, and practitioners to help set the future direction of the use of nanotechnology in cement and concrete science.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


Author(s):  
Matthew S. Muroski ◽  
Om V. Singh

Biofuels are emerging as integral and necessary research areas towards clean, next generation energy production, while providing alternative sources of sustainability. In addition to advancements in nanotechnology, many obstacles remain on the way for producing economically viable biofuels such as the challenges involved in the breakdown of cellulose, hemicelluloses, and lignin found in woody biomass. The use of micro-algae as a feedstock in biofuel has already been impacted by the advancements of nanotechnology. However, interdisciplinary breakthroughs are needed to make biofuels viable contenders as replacements for traditional fossil fuels. The authors discuss recent advances, benefits, and challenges facing nanotechnology in accordance with furthering our understanding and improving the state of biofuel manufacturing, including the implementation of nanotechnology in other aspects of biofuels production, such as cracking catalyst design, carbon nanotube electrodes for fuel cells, and enzymatic production of biofuels.


Sign in / Sign up

Export Citation Format

Share Document