Child with acute weakness: don’t forget the salts

Author(s):  
Kathryn Boyle ◽  
Ben McNaughten ◽  
Andrew Thompson ◽  
Stephen Mullen

Case summaryA 10-year-old boy presented with severe progressive generalised weakness on a background of 3 days of diarrhoea and vomiting. Vital signs were normal. Peripheral neurological examination revealed grade 1–2 power in all limbs, hypotonia and hyporeflexia. Sensation was fully intact. Cranial nerve examination and speech were normal. The ECG (figure 1) and initial venous blood gas (figure 2) are shown.Figure 1ECG.Figure 2Venous blood gas.Question 1What abnormalities are present on the ECG?Peaked T waves, prolonged PR segment and loss of P waves?Shortening of the QT interval and Osborn waves (J waves)?T wave flattening/inversion, prominent U waves and long QU interval?Prolonged QT interval with multiple atrial and ventricular ectopics?Question 2How would you manage this patient’s hypokalaemia?Question 3What is the likely diagnosis?Conversion disorder.Myasthenia gravis.Periodic paralysis.Guillain-Barré syndrome.Botulism.Question 4What interventions can be considered for long-term treatment of this condition?Answers can be found on page 2.

CJEM ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 644-647
Author(s):  
Nicholas J. Connors ◽  
Robert S. Hoffman ◽  
Sophie Gosselin

A 54-year-old woman prepares dinner around 8:00 pm that includes mushrooms that she picked from her yard. The next morning, around 8:00 am, the woman (patient), her daughter, and son-in-law all develop abdominal cramps, violent vomiting, and diarrhea. They present to the emergency department and are admitted for dehydration and intractable vomiting with a presumed diagnosis of food poisoning. Twenty-four hours later, they appear well with stable vital signs and improved symptoms. Four hours later, 36 hours post-ingestion, the patient becomes lethargic. A venous blood gas reveals pH, 7.1; PCO2, 16 mmHg; and her AST was 3140 units/L with an ALT of 4260 units/L and an INR of 3.7.


Author(s):  
Kirsty L. Ress ◽  
Gus Koerbin ◽  
Ling Li ◽  
Douglas Chesher ◽  
Phillip Bwititi ◽  
...  

AbstractObjectivesVenous blood gas (VBG) analysis is becoming a popular alternative to arterial blood gas (ABG) analysis due to reduced risk of complications at phlebotomy and ease of draw. In lack of published data, this study aimed to establish reference intervals (RI) for correct interpretation of VBG results.MethodsOne hundred and 51 adult volunteers (101 females, 50 males 18–70 y), were enrolled after completion of a health questionnaire. Venous blood was drawn into safePICO syringes and analysed on ABL827 blood gas analyser (Radiometer Pacific Pty. Ltd.). A non-parametric approach was used to directly establish the VBG RI which was compared to a calculated VBG RI based on a meta-analysis of differences between ABG and VBGResultsAfter exclusions, 134 results were used to derive VBG RI: pH 7.30–7.43, partial pressure of carbon dioxide (pCO2) 38–58 mmHg, partial pressure of oxygen (pO2) 19–65 mmHg, bicarbonate (HCO3−) 22–30 mmol/L, sodium 135–143 mmol/L, potassium 3.6–4.5 mmol/L, chloride 101–110 mmol/L, ionised calcium 1.14–1.29 mmol/L, lactate 0.4–2.2 mmol/L, base excess (BE) −1.9–4.5 mmol/L, saturated oxygen (sO2) 23–93%, carboxyhaemoglobin 0.4–1.4% and methaemoglobin 0.3–0.9%. The meta-analysis revealed differences between ABG and VBG for pH, HCO3−, pCO2 and pO2 of 0.032, −1.0 mmol/L, −4.2 and 39.9 mmHg, respectively. Using this data along with established ABG RI, calculated VBG RI of pH 7.32–7.42, HCO3− 23 – 27 mmol/L, pCO2 36–49 mmHg (Female), pCO2 39–52 mmHg (Male) and pO2 43–68 mmHg were formulated and compared to the VBG RI of this study.ConclusionsAn adult reference interval has been established to assist interpretation of VBG results.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Weinmann ◽  
A Lenz ◽  
R Heudorfer ◽  
D Aktolga ◽  
M Rattka ◽  
...  

Abstract Background Ablation of complex cardiac arrhythmias requires an immobilized patient. For a successful and safe intervention and for patient comfort, this can be achieved by conscious sedation. Administered sedatives and analgesics have respiratory depressant side effects and require close monitoring. Purpose We investigated the feasibility and accuracy of an additional, continuous transcutaneous carbon-dioxide partial pressure (tpCO2) measurement during conscious sedation in complex electrophysiological catheter ablation procedures. Methods We evaluated the accuracy and additional value of tpCO2 detection by application of a Severinghaus electrode in comparison to arterial and venous blood gas analyses. Results We included 110 patients in this prospective observational study. Arterial pCO2 (paCO2) and tpCO2 showed good correlation throughout the procedures (r=0.60–0.87, p<0.005). Venous pCO2 (pvCO2) were also well correlated to transcutaneous values (r=0.65–0.85, p<0.0001). Analyses of the difference of pvCO2 and tpCO2 measurements showed a tolerance within <10mmHg in up to 96–98% of patients. Hypercapnia (pCO2<70mmHg) was detected more likely and earlier by continuous tpCO2 monitoring compared to half-hourly pvCO2 measurements. Conclusion Continuous tpCO2 monitoring is feasible and precise with good correlation to arterial and venous blood gas carbon-dioxide analysis during complex catheter ablations under conscious sedation and may contribute to additional safety. Funding Acknowledgement Type of funding source: None


Perfusion ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Frode Kristiansen ◽  
Jan Olav Høgetveit ◽  
Thore H Pedersen

This paper presents the clinical testing of a new capno-graph designed to measure the carbon dioxide tension at the oxygenator exhaust outlet in cardiopulmonary bypass (CPB). During CPB, there is a need for reliable, accurate and instant estimates of the arterial blood CO2 tension (PaCO2) in the patient. Currently, the standard practice for measuring PaCO2 involves the manual collection of intermittent blood samples, followed by a separate analysis performed by a blood gas analyser. Probes for inline blood gas measurement exist, but they are expensive and, thus, unsuitable for routine use. A well-known method is to measure PexCO2, ie, the partial pressure of CO2 in the exhaust gas output from the oxygenator and use this as an indirect estimate for PaCO2. Based on a commercially available CO2 sensor circuit board, a laminar flow capnograph was developed. A standard sample line with integrated water trap was connected to the oxygenator exhaust port. Fifty patients were divided into six different groups with respect to oxygenator type and temperature range. Both arterial and venous blood gas samples were drawn from the CPB circuit at various temperatures. Alfa-stat corrected pCO2 values were obtained by running a linear regression for each group based on the arterial temperature and then correcting the PexCO2 accordingly. The accuracy of the six groups was found to be (±SD): ±4.3, ±4.8, ±5.7, ±1.0, ±3.7 and ±2.1%. These results suggest that oxygenator exhaust capnography is a simple, inexpensive and reliable method of estimating the PaCO2 in both adult and pediatric patients at all relevant temperatures.


2012 ◽  
Vol 140 (7-8) ◽  
pp. 436-440 ◽  
Author(s):  
Milos Novovic ◽  
Vesna Topic

Introduction. Arterial blood gas (ABG) analyses have an important role in the assessment and monitoring of the metabolic and oxygen status of patients with acute exacerbation of chronic obstructive pulmonary disease (COPD). Arterial puncture could have a lot of adverse effects, while sampling of venous blood is simpler and is not so invasive. Objective. The aim of this study was to evaluate whether venous blood gas (VBG) values of pH, partial pressure of carbon dioxide (PCO2), partial oxygen pressure (PO2), bicarbonate (HCO3), and venous and arterial blood oxygen saturation (SO2) can reliably predict ABG levels in patients with acute exacerbation of COPD. Methods. Forty-seven patients with a prior diagnosis of COPD were included in this prospective study. The patients with acute exacerbation of this disease were examined at the General Hospital EMS Department in Prijepolje. ABG samples were taken immediately after venous sampling, and both were analyzed. Results. The Pearson correlation coefficients between arterial and venous parameters were 0.828, 0.877, 0.599, 0.896 and 0.312 for pH, PCO2, PO2, HCO3 and SO2, respectively. The statistically significant correlation between arterial and venous pH, PCO2 and HCO3, values was found in patients with acute exacerbation of COPD (p<0.001). Conclusion. When we cannot provide arterial blood for analysis, venous values of the pH, Pv,CO2 and HCO3 parameters can be an alternative to their arterial equivalents in the interpretation of the metabolic status in patients with acute exacerbation of COPD, while the values of venous Pv,O2 and Sv,O2 cannot be used as predictors in the assessment of oxygen status of such patients.


2005 ◽  
Vol 18 (4) ◽  
pp. 737-744 ◽  
Author(s):  
F. Gambi ◽  
D. De Berardis ◽  
G. Sepede ◽  
D. Campanella ◽  
N. Galliani ◽  
...  

Hypothalamic pituitary thyroid (HPT) axis abnormalities and alterations in major depression are reported in literature. The aim of our study was to evaluate the effect of mirtazapine on thyroid hormones after 6 months of therapy in a sample of adult outpatients with Major Depression (MD). 17 adult outpatients (7 men, 10 women) with MD according to DSM-IV criteria, were included in the study. All participants had to have met criteria for a major depressive episode with a score of at least 15 on the Hamilton Depression Rating Scale (HAM-D). Fasting venous blood samples were obtained for determination of serum Thyroid Stimulating Hrmone (TSH), Free T3 (FT3) and Free T4 (FT4) concentrations both at baseline and after 6 months of therapy. HAM-D scores decreased significantly from the first day of treatment to the end of the treatment period (p<0.001) and twelve patients (70.6%) were classified as responders. A significant increase in FT3 concentrations was found between baseline and the end of treatment period (P=0.015) whereas FT4 concentrations decreased (P=0.046). No significant changes were found in TSH levels. Higher FT4 concentrations at baseline predicted higher HAM-D scorers both at baseline and at the end of the treatment period. Furthermore, higher FT3 concentrations at endpoint were found to be predictors of lower HAM-D scores. Long-term treatment with mirtazapine increases FT3 levels and decreases FT4 maybe involving the deiodination process of T4 into T3.


Sign in / Sign up

Export Citation Format

Share Document