scholarly journals Customised three-dimensional printed revision acetabular implant for large defect after failed triflange revision cup

2020 ◽  
Vol 13 (5) ◽  
pp. e233965
Author(s):  
Stefano Zanasi ◽  
Hassan Zmerly

Aseptic loosening is the most common cause for total hip arthroplasty revision. Acetabular cup revision is a significant challenge in the presence of a large bone defect. One of the options for cup revision in the presence of a large bone defect is the recently introduced customised three-dimensional (3D)-printed reconstruction. We present the case of a 68-year-old woman successfully treated with a customised revision acetabular implant for the failure of triflange cup in the presence of large acetabular defect. The modern orthopaedic surgeon must have full knowledge of customised 3D-printed reconstruction to have as a reserve solution for difficult hip revision surgery.

2021 ◽  
Vol 6 (11) ◽  
pp. 3659-3670
Author(s):  
Teng Zhang ◽  
Qingguang Wei ◽  
Hua Zhou ◽  
Zehao Jing ◽  
Xiaoguang Liu ◽  
...  

Author(s):  
Ziyue Peng ◽  
Chengqiang Wang ◽  
Chun Liu ◽  
Haixia Xu ◽  
Yihan Wang ◽  
...  

Fabricate a MgO2-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.


Medicine ◽  
2015 ◽  
Vol 94 (50) ◽  
pp. e2220 ◽  
Author(s):  
Denis Dufrane ◽  
Pierre-Louis Docquier ◽  
Christian Delloye ◽  
Hélène A. Poirel ◽  
Wivine André ◽  
...  

2021 ◽  
Vol 497 (1) ◽  
pp. 123-129
Author(s):  
Liang Zhao ◽  
Yuming Luo ◽  
Yijun Wang ◽  
Fujian Zhao ◽  
Xiaofeng Chen ◽  
...  

2020 ◽  
Vol 121 (3) ◽  
pp. 570-577 ◽  
Author(s):  
Weijian Liu ◽  
Zengwu Shao ◽  
Saroj Rai ◽  
Binwu Hu ◽  
Qiang Wu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun Fu ◽  
Yi Xiang ◽  
Ming Ni ◽  
Xiaojuan Qu ◽  
Yonggang Zhou ◽  
...  

Background and Purpose. This study established an animal model of the acetabular bone defect in swine and evaluated the bone ingrowth, biomechanics, and matching degree of the individualized three-dimensional (3D) printed porous augment. Methods. As an acetabular bone defect model created in Bama miniswine, an augment individually fabricated by 3D print technique with Ti6Al4V powders was implanted to repair the defect. Nine swine were divided into three groups, including the immediate biomechanics group, 12-week biomechanics group, and 12-week histological group. The inner structural parameters of the 3D printed porous augment were measured by scanning electron microscopy (SEM), including porosity, pore size, and trabecular diameter. The matching degree between the postoperative augment and the designed augment was assessed by CT scanning and 3D reconstruction. In addition, biomechanical properties, such as stiffness, compressive strength, and the elastic modulus of the 3D printed porous augment, were measured by means of a mechanical testing machine. Moreover, bone ingrowth and implant osseointegration were histomorphometrically assessed. Results. In terms of the inner structural parameters of the 3D printed porous augment, the porosity was 55.48 ± 0.61 % , pore size 319.23 ± 25.05   μ m , and trabecular diameter 240.10 ± 23.50   μ m . Biomechanically, the stiffness was 21464.60 ± 1091.69   N / mm , compressive strength 231.10 ± 11.77   MPa , and elastic modulus 5.35 ± 0.23   GPa , respectively. Furthermore, the matching extent between the postoperative augment and the designed one was up to 91.40 ± 2.83 % . Besides, the maximal shear strength of the 3D printed augment was 929.46 ± 295.99   N immediately after implantation, whereas the strength was 1521.93 ± 98.38   N 12 weeks after surgery ( p = 0.0302 ). The bone mineral apposition rate (μm per day) 12 weeks post operation was 3.77 ± 0.93   μ m / d . The percentage bone volume of new bone was 22.30 ± 4.51 % 12 weeks after surgery. Conclusion. The 3D printed porous Ti6Al4V augment designed in this study was well biocompatible with bone tissue, possessed proper biomechanical features, and was anatomically well matched with the defect bone. Therefore, the 3D printed porous Ti6Al4V augment possesses great potential as an alternative for individualized treatment of severe acetabular bone defects.


Sign in / Sign up

Export Citation Format

Share Document