Identification of presumed corneal neuromas and microneuromas using laser-scanning in vivo confocal microscopy: a systematic review

2021 ◽  
pp. bjophthalmol-2020-318156
Author(s):  
Holly Rose Chinnery ◽  
Rajni Rajan ◽  
Haihan Jiao ◽  
Mengliang Wu ◽  
Alexis Ceecee Zhang ◽  
...  

Background/aimsThis systematic review critically evaluated peer-reviewed publications describing morphological features consistent with, or using terms related to, a ‘neuroma’ or ‘microneuroma’ in the human cornea using laser-scanning in vivo confocal microscopy (IVCM).MethodsThe review was prospectively registered on PROSPERO (CRD42020160038). Comprehensive literature searches were performed in Ovid MEDLINE, Ovid Embase and the Cochrane Library in November 2019. The review included primary research studies and reviews that described laser-scanning IVCM for examining human corneal nerves. Papers had to include at least one of a pre-specified set of keyword stems, broadly related to neuromas and microneuromas, to describe a corneal nerve feature.ResultsTwenty-five papers (20 original studies; 5 reviews) were eligible. Three original studies evaluated corneal nerve features in healthy eyes. Most papers assessed corneal nerves in ocular and systemic conditions; seven studies did not include a control/comparator group. There was overlap in terminology used to describe nerve features in healthy and diseased corneas (eg, bulb-like/bulbous, penetration, end/s/ing). Inspection of IVCM images within the papers revealed that features termed ‘neuromas’ and ‘microneuromas’ could potentially be physiological corneal stromal-epithelial nerve penetration sites. We identified inconsistent definitions for terms, and limitations in IVCM image acquisition, sampling and/or reporting that may introduce bias and lead to inaccurate representation of physiological nerve characteristics as pathological.ConclusionThese findings identify a need for consistent nomenclature and definitions, and rigorous IVCM scanning and analysis protocols to clarify the prevalence of physiological, as opposed to pathological, corneal nerve features.

BMJ Open ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. e018646 ◽  
Author(s):  
Manikkuwadura Eranda Harshan De Silva ◽  
Alexis Ceecee Zhang ◽  
Amalia Karahalios ◽  
Holly Rose Chinnery ◽  
Laura Elizabeth Downie

IntroductionLaser scanning in vivo confocal microscopy (IVCM) enables non-invasive, high-resolution imaging of the cornea. In recent years, there has been a vast increase in researchers using laser scanning IVCM to image and quantify corneal nerve parameters. However, a range of methodological approaches have been adopted. The primary aim of this systematic review is to critically appraise the reported method(s) of primary research studies that have used laser scanning IVCM to quantify corneal sub-basal nerve plexus (SBNP) parameters in humans, and to examine corneal nerve parameters in healthy individuals.Methods and analysisA systematic review of primary studies that have used laser scanning IVCM to quantify SBNP parameters in humans will be conducted. Comprehensive electronic searches will be performed in Ovid MedLine, Embase and the Cochrane Library. Two reviewers will independently assess titles and abstracts, and exclude studies not meeting the inclusion criteria. For studies judged eligible or potentially eligible, full texts will be independently assessed by two reviewers to determine eligibility. A third reviewer will resolve any discrepancies in judgement. Risk of bias will be assessed using a custom tool, covering five methodological domains: participant selection, method of image capture, method of image analysis, data reporting and other sources of bias. A systematic narrative synthesis of findings will be provided. A multilevel random-effects meta-analysis will be performed for corneal nerve parameters derived from healthy participants. This review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.Ethics and disseminationAs this review considers published data, ethical approval is not required. We foresee that this synthesis will serve as a reference for future studies, and can be used to inform best practice standards for using IVCM in clinical research. A manuscript reporting the results of the review will be published and may also be presented at scientific conferences.


2022 ◽  
Author(s):  
Takahiko Hayashi ◽  
Atsuyuki Ishida ◽  
Akira Kobayashi ◽  
Takefumi Yamaguchi ◽  
Nobuhisa Mizuki ◽  
...  

Abstract This study evaluated changes in corneal nerves and the number of dendritic cells (DCs) in corneal basal epithelium following Descemet membrane endothelial keratoplasty (DMEK) surgery for bullous keratopathy (BK). Twenty-three eyes from 16 consecutive patients that underwent DMEK for BK were included. Eyes of age-matched patients that underwent pre-cataract surgery (12 eyes) were used as controls. In vivo confocal microscopy was performed pre- and postoperatively at 6, 12, and 24 months. Corneal nerve length, corneal nerve trunks, number of branches, and the number of DCs were determined. The total corneal nerve length of 1634.7 ± 1389.1 μm /mm2 before surgery was significantly increased in a time-dependent manner to 4485.8 ± 1403.7 μm /mm2, 6949.5 ± 1477.1 μm /mm2, and 9389.2 ± 2302.2 μm /mm2 at 6, 12, and 24 months after DMEK surgery, respectively. The DC density in BK cornea pre- and postoperatively at 6 months was significantly higher than in the controls, and decreased postoperatively at 12 and 24 months and was significantly lower than that at 6 months postoperatively. Thus, our results suggest that DMEK can repair and normalize the corneal environment.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Dai Wang ◽  
Peng Song ◽  
Shuting Wang ◽  
Dapeng Sun ◽  
Yuexin Wang ◽  
...  

Purpose.To evaluate the changes of keratocytes and dendritic cells in the central clear graft by laser scanning in vivo confocal microscopy after penetrating keratoplasty (PK).Methods.Thirty adult subjects receiving PK at Shandong Eye Institute and with clear grafts and no sign of immune rejection after surgery were recruited into this study, and 10 healthy adults were controls. The keratocytes and dendritic cells in the central graft were evaluated by laser scanning confocal microscopy, as well as epithelium cells, keratocytes, corneal endothelium cells, and corneal nerves (especially subepithelial plexus nerves).Results.Median density of subepithelial plexus nerves, keratocyte density in each layer of the stroma, and density of corneal endothelium cells were all lower in clear grafts than in controls. The dendritic cells of five (16.7%) patients were active in Bowman’s membrane and stromal membrane of the graft after PK.Conclusions.Activated dendritic cells and Langerhans cells could be detected in some of the clear grafts, which indicated that the subclinical stress of immune reaction took part in the chronic injury of the clear graft after PK, even when there was no clinical rejection episode.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jaya D. Chidambaram ◽  
Namperumalsamy V. Prajna ◽  
Srikanthi Palepu ◽  
Shruti Lanjewar ◽  
Manisha Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document