corneal endothelium
Recently Published Documents


TOTAL DOCUMENTS

1296
(FIVE YEARS 175)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xuemei Wang ◽  
Yanlin Zhong ◽  
Minghui Liang ◽  
Zhirong Lin ◽  
Huping Wu ◽  
...  

Purpose. To investigate the changes of corneal endothelium under different crosslinking conditions and the protective effect of ripasudil. Methods. Corneal crosslinking groups were infiltrated with riboflavin and subsequently irradiated with 0.54 J/cm2 or 1.08 J/cm2 UVA, while noncrosslinking groups included neither UVA nor riboflavin treatment, only 1.08 J/cm2 UVA and only riboflavin treatment. Corneal opacity, variations in corneal endothelial cells, and corneal thickness of all groups were observed by slit lamp, in vivo confocal microscopy, and optical coherence tomography. Immunofluorescence staining and scanning electron microscopy were performed to evaluate changes in the structure and function of the corneal endothelium. The mice that received a corneal crosslinking dose of 1.08 J/cm2 were instilled with ripasudil to explore its protective effect on the corneal endothelium. Results. Treatment with UVA and riboflavin caused an increase in corneal opacity and corneal thickness and decreased endothelial cell density. Furthermore, treatment with UVA and riboflavin caused endothelial cell DNA damage and destroyed the tight junction and pump function of the endothelium, while riboflavin or the same dose of UVA alone did not affect the endothelium. Ripasudil reduced DNA damage in endothelial cells, increased the density of cells, and protected the endothelium’s integrity and function. Conclusion. Riboflavin combined with UVA can damage the corneal endothelium’s normal functioning. The corneal endothelium’s wound healing is dose-dependent, and the ROCK inhibitor ripasudil maintains the endothelium’s pump and barrier functions.


2021 ◽  
Vol 9 (12) ◽  
pp. 478-479
Author(s):  
M. Bentaleb ◽  
N. Taouri ◽  
R.EL Hachimi ◽  
R.El Hadiri ◽  
Lalla Ouafa Cherkaoui

HSV infection can affect nearly every ocular tissue. In cases of corneal involvement, the epithelium, stroma, or endothelium may be affected. Both herpes stromal keratitis (HSK) and HSV endotheliitis can present clinically with stromal opacity and, therefore, may be difficult to distinguish. In this case we will be describing a viral endotheliitis with a particular aspect on the corneal endothelium.


2021 ◽  
Vol 15 (1) ◽  
pp. 329-337
Author(s):  
Mohamed Salah El-Din Mahmoud ◽  
Ebtesam E. Hassan ◽  
Ahmed S. Abdelhalim

Purpose: To study the effect of LASIK with accelerated CXL on corneal endothelium in myopic diabetic patients. Methods: A prospective comparative interventional case series study on 120 eyes of 60 myopic patients treated with LASIK with accelerated CXL. They were divided into two groups; group A included 60 eyes of diabetic patients, group B included 60 eyes of non-diabetic patients. Corneal endothelium was evaluated by specular microscope preoperatively and after 3 and 6 months postoperatively. Results: The endothelial cells density (ECD) showed statistically significant changes after 3 and 6 months postoperatively (p-value <0.001) in group A while group B showed statistically significant changes after 3 months without significant change after 6 months (p-value= 0.103), both groups had improved to near preoperative levels, with no significant differences between them at the end of 6 months follow-up (p-value = 0.219). Regarding pleomorphism, there was a significant change in group A during 6 months follow-up (p-value <0.001) with no significant change in group B (p-value= 0.884), and in comparing both groups, there was a significant change at the end of 6 months follow-up (p-value <0.001). Regarding polymegathism, there was a significant change in group A during 6 months follow-up (p-value <0.001) with no significant change in group B after 3 (p-value= 0.178) and 6 (p-value= 0.866) months follow-up, and in comparing both groups, there was a significant change at the end of 6 months follow-up (p-value <0.001). Conclusion: LASIK with accelerated CXL is safe on corneal endothelium in diabetic myopic patients but needs to follow up for a long period.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2006
Author(s):  
Ida Maria Westin ◽  
Andreas Viberg ◽  
Berit Byström ◽  
Irina Golovleva

Fuchs’ endothelial corneal dystrophy (FECD) is a bilateral disease of the cornea caused by gradual loss of corneal endothelial cells. Late-onset FECD is strongly associated with the CTG18.1 trinucleotide repeat expansion in the Transcription Factor 4 gene (TCF4), which forms RNA nuclear foci in corneal endothelial cells. To date, 46 RefSeq transcripts of TCF4 are annotated by the National Center of Biotechnology information (NCBI), however the effect of the CTG18.1 expansion on expression of alternative TCF4 transcripts is not completely understood. To investigate this, we used droplet digital PCR for quantification of TCF4 transcripts spanning over the CTG18.1 and transcripts with transcription start sites immediately downstream of the CTG18.1. TCF4 expression was analysed in corneal endothelium and in whole blood of FECD patients with and without CTG18.1 expansion, in non-FECD controls without CTG18.1 expansion, and in five additional control tissues. Subtle changes in transcription levels in groups of TCF4 transcripts were detected. In corneal endothelium, we found a lower fraction of transcripts spanning over the CTG18.1 tract compared to all other tissues investigated.


Cornea ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Naoki Okumura ◽  
Shohei Yamada ◽  
Takeru Nishikawa ◽  
Kaito Narimoto ◽  
Kengo Okamura ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260837
Author(s):  
Eric D. Wieben ◽  
Ross A. Aleff ◽  
Tommy A. Rinkoski ◽  
Keith H. Baratz ◽  
Shubham Basu ◽  
...  

Expansion of CTG trinucleotide repeats (TNR) in the transcription factor 4 (TCF4) gene is highly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Due to limitations in the availability of DNA from diseased corneal endothelium, sizing of CTG repeats in FECD patients has typically been determined using DNA samples isolated from peripheral blood leukocytes. However, it is non-feasible to extract enough DNA from surgically isolated FECD corneal endothelial tissue to determine repeat length based on current technology. To circumvent this issue, total RNA was isolated from FECD corneal endothelium and sequenced using long-read sequencing. Southern blotting of DNA samples isolated from primary cultures of corneal endothelium from these same affected individuals was also assessed. Both long read sequencing and Southern blot analysis showed significantly longer CTG TNR expansion (>1000 repeats) in the corneal endothelium from FECD patients than those characterized in leukocytes from the same individuals (<90 repeats). Our findings suggest that the TCF4 CTG repeat expansions in the FECD corneal endothelium are much longer than those found in leukocytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sujuan Duan ◽  
Yingjie Li ◽  
Yanyan Zhang ◽  
Xuan Zhu ◽  
Yan Mei ◽  
...  

Purpose. Corneal endothelial cells are usually exposed to shear stress caused by the aqueous humour, which is similar to the exposure of vascular endothelial cells to shear stress caused by blood flow. However, the effect of fluid shear stress on corneal endothelial cells is still poorly understood. The purpose of this study was to explore whether the shear stress that results from the aqueous humour influences corneal endothelial cells. Methods. An in vitro model was established to generate fluid flow on cells, and the effect of fluid flow on corneal endothelial cells after exposure to two levels of shear stress for different durations was investigated. The mRNA and protein expression of corneal endothelium-related markers in rabbit corneal endothelial cells was evaluated by real-time PCR and western blotting. Results. The expression of the corneal endothelium-related markers ZO-1, N-cadherin, and Na+-K+-ATPase in rabbit corneal endothelial cells (RCECs) was upregulated at both the mRNA and protein levels after exposure to shear stress. Conclusion. This study demonstrates that RCECs respond favourably to fluid shear stress, which may contribute to the maintenance of corneal endothelial cell function. Furthermore, this study also provides a theoretical foundation for further investigating the response of human corneal endothelial cells to the shear stress caused by the aqueous humour.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhen Yu ◽  
Nikolaos E. Efstathiou ◽  
Victor S. M. C. Correa ◽  
Xiaohong Chen ◽  
Kenji Ishihara ◽  
...  

AbstractUltraviolet (UV) is one of the most energetic radiations in the solar spectrum that can result in various tissue injury disorders. Previous studies demonstrated that UVA, which represents 95% of incident photovoltaic radiation, induces corneal endothelial cells (CECs) death. Programmed cell death (PCD) has been implicated in numerous ophthalmologic diseases. Here, we investigated receptor-interacting protein 3 kinase (RIPK3), a key signaling molecule of PCD, in UVA-induced injury using a short-term corneal endothelium (CE) culture model. UVA irradiation activated RIPK3 and mediated necroptosis both in mouse CE and primary human CECs (pHCECs). UVA irradiation was associated with upregulation of key necroptotic molecules (DAI, TRIF, and MLKL) that lie downstream of RIPK3. Moreover, RIPK3 inhibition or silencing in primary corneal endothelial cells suppresses UVA-induced cell death, along with downregulation of MLKL in pHCECs. In addition, genetic inhibition or knockout of RIPK3 in mice (RIPK3K51A and RIPK3−/− mice) similarly attenuates cell death and the levels of necroptosis in ex vivo UVA irradiation experiments. In conclusion, these results identify RIPK3, not RIPK1, as a critical regulator of UVA-induced cell death in CE and indicate its potential as a future protective target.


Sign in / Sign up

Export Citation Format

Share Document