scholarly journals 20 In vivo tracking of human pluripotent stem cell vascular derivatives.

Heart ◽  
2012 ◽  
Vol 98 (Suppl 3) ◽  
pp. A6.3-A6
Author(s):  
L Low ◽  
C Cheung ◽  
M Bennett ◽  
S Sinha
Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 346 ◽  
Author(s):  
Roya Rasaei ◽  
Eunbi Kim ◽  
Ji-Young Kim ◽  
Sunghun Na ◽  
Jung-Hyun Kim ◽  
...  

Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The elevated level of JAM2 in HG-treated hPVCs was transcriptionally and epigenetically reversible when HG treatment was removed. We further investigated the expression of JAM2 using in vivo and in vitro hyperglycemic models. Our results showed significant upregulation of JAM2 in the lungs of streptozotocin (STZ)-induced diabetic mice, which was greatly suppressed by the administration of conditioned medium obtained from human mesenchymal stem cell cultures. Furthermore, JAM2 was found to be significantly upregulated in human pluripotent stem cell-derived multicellular alveolar organoids by exposure to HG. Our results suggest that JAM2 may play an important role in STZ-induced lung alterations and could be a potential indicator for predicting the therapeutic effects of stem cells and drugs in diabetic lung complications.


Author(s):  
Xiaohua Duan ◽  
Yuling Han ◽  
Liuliu Yang ◽  
Benjamin E. Nilsson-Payant ◽  
Pengfei Wang ◽  
...  

Summary ParagraphThe current COVID-19 pandemic is caused by SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients typically present with respiratory symptoms including cough, dyspnea, and respiratory distress, but nearly 25% of patients have gastrointestinal indications including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with worse COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple hESC-derived colonic cell types, but highly enriched in enterocytes. Multiple cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which was further validated in vivo using a humanized mouse model. We used hPSC-derived COs in a high throughput platform to screen 1280 FDA-approved drugs against viral infection. Mycophenolic acid and quinacrine dihydrochloride were found to block the infection of SARS-CoV-2 pseudo-entry virus in COs both in vitro and in vivo, and confirmed to block infection of SARS-CoV-2 virus. This study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified drugs that blocks SARS-CoV-2 infection, suitable for rapid clinical testing.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Elaheh Karbassi ◽  
Alessandro Bertero ◽  
Shin Kadota ◽  
Paul Fields ◽  
Lil Pabon ◽  
...  

Human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) applications for cell therapy and disease modeling are limited due to the cells’ lack of resemblance structurally and functionally to adult cardiomyocytes. To understand hPSC-CM maturation, we characterized two established approaches to mature cardiomyocytes—long term culture (aging of cells in a dish) and in vivo transplantation to an infarcted adult rat heart. RNA sequencing of hPSC-CMs from these systems demonstrated that in vivo transplantation is much more effective in maturing hPSC-CMs, inducing a more adult-like cardiac gene program (e.g. upregulation of TNNI3, MYL2, SCN5A ), compared to cells kept in culture up to one year. Using this dataset, we identified candidate drivers of hPSC-CM maturation, including transcription factors and chromatin regulators, that we hypothesize are necessary to program hPSC-CMs to an adult-like state. To test the relationship between transcription factor regulation and hPSC-CM maturation, we developed a constitutive CRISPR activation (CRISPRa) pluripotent stem cell line to upregulate these transcriptional regulators upon addition of guide RNAs (gRNA). This cell line expresses nuclease-deficient Cas9 fused to the transcriptional activator VPR (dCas9-VPR), driven by the strong CAG promoter and targeted to the AAVS1 safe harbor site. In pluripotent stem cells, target genes are upregulated up to 150-fold when gRNA is present; however, after differentiation into cardiomyocytes, dCas9-VPR transgene expression is silenced, and dCas9-VPR levels are insufficient to activate gRNA-targeted genes. To optimize CRISPRa for cardiomyocyte applications, we are generating alternative stem cell lines with dCas9-VPR targeted to the human ROSA26 safe harbor site or driven by a cardiac-specific troponin T promoter, testing the regulation of transgene expression mediated by safe harbor site or promoter respectively. The characterization of these CRISPRa cell lines provides insights into CRISPR expression regulation and genome engineering strategies for applications in stem cells and hPSC-CMs. We will use this system to screen for maturation regulators and identify key combinations that are effective in programming hPSC-CMs towards an adult-like state.


2020 ◽  
Author(s):  
Hui Zhang ◽  
Mehmet G. Badur ◽  
Sean Spiering ◽  
Ajit Divakaruni ◽  
Noah E. Meurs ◽  
...  

AbstractObjectivesPluripotent stem cell-derived cardiomyocytes are phenotypically immature, which limits their utility in downstream applications. Metabolism is dramatically reprogramed during cardiac maturation in vivo and presents a potential avenue to drive in vitro maturation. We aimed to identify and address metabolic bottlenecks in the generation of human pluripotent stem cell (hPSC)-derived cardiomyocytes.MethodshPSCs were differentiated into cardiomyocytes using an established, chemically-defined differentiation protocol. We applied 13C metabolic flux analysis (MFA) and targeted transcriptomics to characterize cardiomyocyte metabolism in during differentiation in the presence or absence of exogenous lipids.ResultshPSC-derived cardiomyocytes induced some cardiometabolic pathways (i.e. ketone body and branched-chain amino acid oxidation) but failed to effectively activate fatty acid oxidation. MFA studies indicated that lipid availability in cultures became limited during differentiation, suggesting potential issues with nutrient availability. Exogenous supplementation of lipids improved cardiomyocyte morphology, mitochondrial function, and promoted increased fatty acid oxidation in hPSC-derivatives.ConclusionhPSC-derived cardiomyocytes are dependent upon exogenous sources of lipids for metabolic maturation. Proper supplementation removes a potential roadblock in the generation of metabolically mature cardiomyocytes. These studies further highlight the importance of considering and exploiting metabolic phenotypes in the in vitro production and utilization of functional hPSC-derivatives.


2018 ◽  
Vol 154 (6) ◽  
pp. S-1083
Author(s):  
Wei Song ◽  
Yaron Bram ◽  
Jiwoon Park ◽  
Yen-Chen Lu ◽  
Duo An ◽  
...  

Author(s):  
M. Juliana Gomez-Garcia ◽  
Elya Quesnel ◽  
Rasha Al-attar ◽  
Andrew R. Laskary ◽  
Michael A. Laflamme

StemJournal ◽  
2020 ◽  
pp. 1-10
Author(s):  
Kengo Sasaki ◽  
Makoto Inoue ◽  
Masakazu Machida ◽  
Tomoyuki Kawasaki ◽  
Satoru Tsuruta ◽  
...  

Background: The human intestine is the site of absorption and first-pass metabolism for oral intake. Assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of xenobiotics has transformed the understanding of in vivo pharmacology. However, these processes are difficult torecapitulate in vitro. Objective: We have developed a simple protocol for the generation of mature functional intestinal organoids from human pluripotent stem cells (hPSCs)under xenogeneic-free conditions. We sought to characterize transcription level in drug transporters and metabolism and evaluate CYP3A4 catalytic function of the organoids. Methods: Human pluripotent stem cell-derived intestinal organoids were generated and evaluated the expression of drug transporters and metabolizing enzymes. We examined the induction of CYP3A4 and ABCB1 gene expression in the organoids. Furthermore, we analyzed the CYP3A4 enzyme activity of the organoids by the p450-Glo CYP3A4 assay kit with luciferin isopropyl acetal. Results: Stem cell-derived intestinal organoids had an outward polarized intestinal epithelial layer and showed similar expression levels of drug transporters and metabolism genes as the adult healthy intestine. They also exhibited CYP3A4 enzymatic function in vitro. Conclusion: This model provides a novel platform for pharmacological testing and can enhance human ADMET studies in drug development.


2019 ◽  
Author(s):  
Danny El-Nachef ◽  
Darrian Bugg ◽  
Kevin M. Beussman ◽  
Amy M. Martinson ◽  
Charles E. Murry ◽  
...  

AbstractPreclinical studies have suggested that transplanted human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) grafts expand due to proliferation. This knowledge came from cell cycle activity measurements that cannot discriminate between cytokinesis or DNA synthesis associated with hypertrophy. To refine our understanding of hPSC-CM cell therapy, we genetically engineered a cardiomyocyte-specific fluorescent barcoding system into an hPSC line. Since cellular progeny have the same color as parental hPSC-CMs, we could identify subsets of engrafted hPSC-CMs that clonally expanded, with the remainder being non-proliferative and hypertrophic.


Sign in / Sign up

Export Citation Format

Share Document