scholarly journals Identification of Drugs Blocking SARS-CoV-2 Infection using Human Pluripotent Stem Cell-derived Colonic Organoids

Author(s):  
Xiaohua Duan ◽  
Yuling Han ◽  
Liuliu Yang ◽  
Benjamin E. Nilsson-Payant ◽  
Pengfei Wang ◽  
...  

Summary ParagraphThe current COVID-19 pandemic is caused by SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients typically present with respiratory symptoms including cough, dyspnea, and respiratory distress, but nearly 25% of patients have gastrointestinal indications including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with worse COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple hESC-derived colonic cell types, but highly enriched in enterocytes. Multiple cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which was further validated in vivo using a humanized mouse model. We used hPSC-derived COs in a high throughput platform to screen 1280 FDA-approved drugs against viral infection. Mycophenolic acid and quinacrine dihydrochloride were found to block the infection of SARS-CoV-2 pseudo-entry virus in COs both in vitro and in vivo, and confirmed to block infection of SARS-CoV-2 virus. This study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified drugs that blocks SARS-CoV-2 infection, suitable for rapid clinical testing.

Author(s):  
Xiaohua Duan ◽  
Yuling Han ◽  
Liuliu Yang ◽  
Benjamin E. Nilsson-Payant ◽  
Pengfei Wang ◽  
...  

Abstract The current COVID-19 pandemic is caused by SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients typically present with respiratory symptoms including cough, dyspnea, and respiratory distress, but nearly 25% of patients have gastrointestinal indications including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with worse COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple hESC-derived colonic cell types, but highly enriched in enterocytes. Multiple cell types in the COs can be infected by a SARS-CoV-2 pseudo- entry virus, which was further validated in vivo using a humanized mouse model. We used hPSC-derived COs in a high throughput platform to screen 1280 FDA-approved drugs against viral infection. Mycophenolic acid and quinacrine dihydrochloride were found to block the infection of SARS-CoV-2 pseudo-entry virus in COs both in vitro and in vivo, and confirmed to block infection of SARS-CoV-2 virus. This study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified drugs that blocks SARS-CoV-2 infection, suitable for rapid clinical testing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kriti Joshi ◽  
Fergus Cameron ◽  
Swasti Tiwari ◽  
Stuart I. Mannering ◽  
Andrew G. Elefanty ◽  
...  

Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 346 ◽  
Author(s):  
Roya Rasaei ◽  
Eunbi Kim ◽  
Ji-Young Kim ◽  
Sunghun Na ◽  
Jung-Hyun Kim ◽  
...  

Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The elevated level of JAM2 in HG-treated hPVCs was transcriptionally and epigenetically reversible when HG treatment was removed. We further investigated the expression of JAM2 using in vivo and in vitro hyperglycemic models. Our results showed significant upregulation of JAM2 in the lungs of streptozotocin (STZ)-induced diabetic mice, which was greatly suppressed by the administration of conditioned medium obtained from human mesenchymal stem cell cultures. Furthermore, JAM2 was found to be significantly upregulated in human pluripotent stem cell-derived multicellular alveolar organoids by exposure to HG. Our results suggest that JAM2 may play an important role in STZ-induced lung alterations and could be a potential indicator for predicting the therapeutic effects of stem cells and drugs in diabetic lung complications.


2020 ◽  
Author(s):  
Hui Zhang ◽  
Mehmet G. Badur ◽  
Sean Spiering ◽  
Ajit Divakaruni ◽  
Noah E. Meurs ◽  
...  

AbstractObjectivesPluripotent stem cell-derived cardiomyocytes are phenotypically immature, which limits their utility in downstream applications. Metabolism is dramatically reprogramed during cardiac maturation in vivo and presents a potential avenue to drive in vitro maturation. We aimed to identify and address metabolic bottlenecks in the generation of human pluripotent stem cell (hPSC)-derived cardiomyocytes.MethodshPSCs were differentiated into cardiomyocytes using an established, chemically-defined differentiation protocol. We applied 13C metabolic flux analysis (MFA) and targeted transcriptomics to characterize cardiomyocyte metabolism in during differentiation in the presence or absence of exogenous lipids.ResultshPSC-derived cardiomyocytes induced some cardiometabolic pathways (i.e. ketone body and branched-chain amino acid oxidation) but failed to effectively activate fatty acid oxidation. MFA studies indicated that lipid availability in cultures became limited during differentiation, suggesting potential issues with nutrient availability. Exogenous supplementation of lipids improved cardiomyocyte morphology, mitochondrial function, and promoted increased fatty acid oxidation in hPSC-derivatives.ConclusionhPSC-derived cardiomyocytes are dependent upon exogenous sources of lipids for metabolic maturation. Proper supplementation removes a potential roadblock in the generation of metabolically mature cardiomyocytes. These studies further highlight the importance of considering and exploiting metabolic phenotypes in the in vitro production and utilization of functional hPSC-derivatives.


Author(s):  
M. Juliana Gomez-Garcia ◽  
Elya Quesnel ◽  
Rasha Al-attar ◽  
Andrew R. Laskary ◽  
Michael A. Laflamme

StemJournal ◽  
2020 ◽  
pp. 1-10
Author(s):  
Kengo Sasaki ◽  
Makoto Inoue ◽  
Masakazu Machida ◽  
Tomoyuki Kawasaki ◽  
Satoru Tsuruta ◽  
...  

Background: The human intestine is the site of absorption and first-pass metabolism for oral intake. Assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of xenobiotics has transformed the understanding of in vivo pharmacology. However, these processes are difficult torecapitulate in vitro. Objective: We have developed a simple protocol for the generation of mature functional intestinal organoids from human pluripotent stem cells (hPSCs)under xenogeneic-free conditions. We sought to characterize transcription level in drug transporters and metabolism and evaluate CYP3A4 catalytic function of the organoids. Methods: Human pluripotent stem cell-derived intestinal organoids were generated and evaluated the expression of drug transporters and metabolizing enzymes. We examined the induction of CYP3A4 and ABCB1 gene expression in the organoids. Furthermore, we analyzed the CYP3A4 enzyme activity of the organoids by the p450-Glo CYP3A4 assay kit with luciferin isopropyl acetal. Results: Stem cell-derived intestinal organoids had an outward polarized intestinal epithelial layer and showed similar expression levels of drug transporters and metabolism genes as the adult healthy intestine. They also exhibited CYP3A4 enzymatic function in vitro. Conclusion: This model provides a novel platform for pharmacological testing and can enhance human ADMET studies in drug development.


2009 ◽  
Vol 53 (5) ◽  
pp. 1840-1849 ◽  
Author(s):  
Margot Brickelmaier ◽  
Alexey Lugovskoy ◽  
Ramya Kartikeyan ◽  
Marta M. Reviriego-Mendoza ◽  
Norm Allaire ◽  
...  

ABSTRACT Progressive multifocal leukoencephalopathy (PML) is a rare but frequently fatal disease caused by the uncontrolled replication of JC virus (JCV), a polyomavirus, in the brains of some immunocompromised individuals. Currently, no effective antiviral treatment for this disease has been identified. As a first step in the identification of such therapy, we screened the Spectrum collection of 2,000 approved drugs and biologically active molecules for their anti-JCV activities in an in vitro infection assay. We identified a number of different drugs and compounds that had significant anti-JCV activities at micromolar concentrations and lacked cellular toxicity. Of the compounds with anti-JCV activities, only mefloquine, an antimalarial agent, has been reported to show sufficiently high penetration into the central nervous system such that it would be predicted to achieve efficacious concentrations in the brain. Additional in vitro experiments demonstrated that mefloquine inhibits the viral infection rates of three different JCV isolates, JCV(Mad1), JCV(Mad4), and JCV(M1/SVEΔ), and does so in three different cell types, transformed human glial (SVG-A) cells, primary human fetal glial cells, and primary human astrocytes. Using quantitative PCR to quantify the number of viral copies in cultured cells, we have also shown that mefloquine inhibits viral DNA replication. Finally, we demonstrated that mefloquine does not block viral cell entry; rather, it inhibits viral replication in cells after viral entry. Although no suitable animal model of PML or JCV infection is available for the testing of mefloquine in vivo, our in vitro results, combined with biodistribution data published in the literature, suggest that mefloquine could be an effective therapy for PML.


2018 ◽  
Author(s):  
Tui Neri ◽  
Emilye Hiriart ◽  
Patrick van Vliet ◽  
Emilie Faure ◽  
Russell A Norris ◽  
...  

AbstractGenetically modified mice have advanced our understanding of valve development and related pathologies. Yet, little is known regarding human valvulogenesis in health and diseases. Genuine human in vitro models that reproduce valvular (patho)biology are thus needed. We here developed a human pluripotent stem cell-derived model fit to decode the early steps of human valvulogenesis and to recapitulate valve disease traits in a dish.Using cellular based, single cell omics-informed and in vivo-validated approaches, we derived a population of pre-valvular endocardial cells from a pluripotent stem cell source. These human prevalvular cells (HPVCs) expressed gene patterns conforming to the atrio-ventricular canal (AVC) endocardium signature originally established in E9.0 mouse embryos. In fact, HPVC treated with BMP2, cultured onto mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, underwent endothelial-to-mesenchymal transition and expressed markers of valve interstitial cells of different valvular layers demonstrating tissue functionality. HPVCs also differentiated into tendinous/chondrogenic cells in line with the valvular repertoire. Extending this valvulogenic model to patient specific iPS cells, we recapitulated features of mitral valve prolapse and uncovered that dysregulation of the SHH pathway is likely to be at the origin of the disease thus providing a putative therapeutic target.Human pluripotent stem cells recapitulate early valvulogenesis and provide a powerful model to systematically decipher the origin and lineage contribution of different valvular cell types in humans as well as to study valve diseases in a dish.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


Sign in / Sign up

Export Citation Format

Share Document