Segregation of two variants suggests the presence of autosomal dominant and recessive forms of WFS1-related disease within the same family: expanding the phenotypic spectrum of Wolfram Syndrome

2019 ◽  
Vol 57 (2) ◽  
pp. 121-123 ◽  
Author(s):  
Laina Lusk ◽  
Emily Black ◽  
Jaime Vengoechea

BackgroundWFS1 was initially described as causative agent of autosomal recessive (AR) Wolfram syndrome, a childhood-onset disorder involving diabetes, optic atrophy, hearing loss and neurodegenerative features. However, the discovery of autosomal dominant (AD) disorders caused by this gene has resulted in clinical counselling and result interpretation challenges.ObjectiveWe seek to report a family that appears to segregate dominant and recessive forms of WFS1-related disease.Methods/resultsA 19-year-old woman presented with progressive childhood sensorineural hearing loss and recent optic atrophy, with biallelic mutations in WFS1: c.2486T>C (likely pathogenic) and c.2470G>A (uncertain significance). Her A1C was normal. Her sister carried the same variants and had a similar phenotype. Their father carried c.2486T>C and was found to have mild–moderate hearing loss but no optic atrophy or neurological symptoms. The mother carried c.2470G>A and had a normal audiogram and ophthalmological exam. Providing anticipatory guidance for this family was difficult given the phenotypic variability of WFS1-related disorders and the uncertainty surrounding whether the inheritance pattern was AR or AD.ConclusionThe clinical correlation of the variants identified in this family suggests an AR Wolfram-like syndrome, without the typical diabetes mellitus or diabetes insipidus nor neurological decline. To our knowledge, this is a novel WFS1-related phenotype.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
N. B. Toppings ◽  
J. M. McMillan ◽  
P. Y. B. Au ◽  
O. Suchowersky ◽  
L. E. Donovan

Background.Classical Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations inWFS1,a gene implicated in endoplasmic reticulum (ER) and mitochondrial function. WS is characterized by insulin-requiring diabetes mellitus and optic atrophy. A constellation of other features contributes to the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). This review seeks to raise awareness of this rare form of diabetes so that individuals with WS are identified and provided with appropriate care.Case.We describe a woman without risk factors for gestational or type 2 diabetes who presented with gestational diabetes (GDM) at the age of 39 years during her first and only pregnancy. Although she had optic atrophy since the age of 10 years, WS was not considered as her diagnosis until she presented with GDM. Biallelic mutations inWFS1were identified, supporting a diagnosis of classical WS.Conclusions.The distinct natural history, complications, and differences in management reinforce the importance of distinguishing WS from other forms of diabetes. Recent advances in the genetics and pathophysiology of WS have led to promising new therapeutic considerations that may preserveβ-cell function and slow progressive neurological decline. Insight into the pathophysiology of WS may also inform strategies forβ-cell preservation for individuals with type 1 and 2 diabetes.


2005 ◽  
Vol 125 (11) ◽  
pp. 1189-1194 ◽  
Author(s):  
Yoshihiro Noguchi ◽  
Takatoshi Yashima ◽  
Akio Hatanaka ◽  
Masamichi Uzawa ◽  
Michio Yasunami ◽  
...  

2008 ◽  
Vol 16 (5) ◽  
pp. 593-602 ◽  
Author(s):  
Nele Hilgert ◽  
Vedat Topsakal ◽  
Joost van Dinther ◽  
Erwin Offeciers ◽  
Paul Van de Heyning ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tian-Yi Cui ◽  
Xue Gao ◽  
Sha-Sha Huang ◽  
Yan-Yan Sun ◽  
Si-Qi Zhang ◽  
...  

Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.


2002 ◽  
Vol 23 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Serap Özden ◽  
Füsun Düzcan ◽  
Bernd Wollnik ◽  
G. Ozan Çetin ◽  
Türker Sahiner ◽  
...  

2021 ◽  
pp. jmedgenet-2020-107257
Author(s):  
Kun Hu ◽  
Malgorzata Zatyka ◽  
Dewi Astuti ◽  
Nicola Beer ◽  
Renuka P Dias ◽  
...  

BackgroundWolfram syndrome (WFS) is a rare disorder characterised by childhood-onset diabetes mellitus and progressive optic atrophy. Most patients have variants in the WFS1 gene. We undertook functional studies of WFS1 variants and correlated these with WFS1 protein expression and phenotype.Methods9 patients with a clinical diagnosis of WFS were studied with quantitative PCR for markers of endoplasmic reticulum (ER) stress and immunoblotting of fibroblast protein extracts for WFS1 protein expression. Luciferase reporter assay was used to assess ATF-6 dependent unfolded protein response (UPR) activation.Results6 patients with compound heterozygous nonsense mutations in WFS1 had no detectable WFS1 protein expression; 3 patients with missense variants had 4%, 45% and 48% WFS1 protein expression. One of these also had an OPA1 mutation and was reclassified as autosomal dominant optic atrophy-plus syndrome. There were no correlations between ER stress marker mRNA and WFS1 protein expression. ERSE-luciferase reporter indicated activation of the ATF6 branch of UPR in two patients tested. Patients with partial WFS1 expression showed milder visual acuity impairment (asymptomatic or colour blind only), compared with those with absent expression (registered severe vision impaired) (p=0.04). These differences remained after adjusting for duration of optic atrophy.ConclusionsPatients with WFS who have partial WFS1 protein expression present with milder visual impairment. This suggests a protective effect of partial WFS1 protein expression on the severity and perhaps progression of vision impairment and that therapies to increase residual WFS1 protein expression may be beneficial.


Neurogenetics ◽  
2021 ◽  
Author(s):  
Luca Magistrelli ◽  
Roberta Croce ◽  
Fabiola De Marchi ◽  
Chiara Basagni ◽  
Miryam Carecchio ◽  
...  

AbstractPrimary familial brain calcification (PFBC) is a neurological condition characterized by the presence of intracranial calcifications, mainly involving basal ganglia, thalamus, and dentate nuclei. So far, six genes have been linked to this condition: SLC20A2, PDGFRB, PDGFB, and XPR1 inherited as autosomal-dominant trait, while MYORG and JAM2 present a recessive pattern of inheritance. Patients mainly present with movement disorders, psychiatric disturbances, and cognitive decline or are completely asymptomatic and calcifications may represent an occasional finding. Here we present three variants in SLC20A2, two exonic and one intronic, which we found in patients with PFBC associated to three different clinical phenotypes. One variant is novel and two were already described as variants of uncertain significance. We confirm the pathogenicity of these three variants and suggest a broadening of the phenotypic spectrum associated with mutations in SLC20A2.


Sign in / Sign up

Export Citation Format

Share Document