Sarcoptic mange (Sarcoptes scabiei var vulpes) in a red fox (Vulpes vulpes) population in north-west Surrey

2003 ◽  
Vol 152 (4) ◽  
pp. 112-114 ◽  
Author(s):  
P. Bates
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Roberto Rolando Pisano ◽  
Fridolin Zimmermann ◽  
Luca Rossi ◽  
Simon Capt ◽  
Ezgi Akdesir ◽  
...  

Abstract Background Sarcoptic mange is a contagious skin disease of wild and domestic mammals caused by the mite Sarcoptes scabiei. Reports of sarcoptic mange in wildlife increased worldwide in the second half of the 20th century, especially since the 1990s. The aim of this study was to provide new insights into the epidemiology of mange by (i) documenting the emergence of sarcoptic mange in the red fox (Vulpes vulpes) in the last decades in Switzerland; and (ii) describing its spatiotemporal spread combining data obtained through different surveillance methods. Methods Retrospective analysis of archived material together with prospective data collection delivered a large dataset from the 19th century to 2018. Methods included: (i) a review of historical literature; (ii) screening of necropsy reports from general health surveillance (1958–2018); (iii) screening of data on mange (1968–1992) collected during the sylvatic rabies eradication campaign; (iv) a questionnaire survey (<1980–2017) and (v) evaluation of camera-trap bycatch data (2005–2018). Results Sarcoptic mange in red foxes was reported as early as 1835 in Switzerland. The first case diagnosed in the framework of the general health surveillance was in 1959. Prior to 1980, sarcoptic mange occurred in non-adjacent surveillance districts scattered all over the country. During the period of the rabies epidemic (1970s-early 1990s), the percentage of foxes tested for rabies with sarcoptic mange significantly decreased in subregions with rabies, whereas it remained high in the few rabies-free subregions. Sarcoptic mange re-emerged in the mid-1990s and continuously spread during the 2000–2010s, to finally extend to the whole country in 2017. The yearly prevalence of mange in foxes estimated by camera-trapping ranged from 0.1–12%. Conclusions Sarcoptic mange has likely been endemic in Switzerland as well as in other European countries at least since the mid-19th century. The rabies epidemics seem to have influenced the pattern of spread of mange in several locations, revealing an interesting example of disease interaction in free-ranging wildlife populations. The combination of multiple surveillance tools to study the long-term dynamics of sarcoptic mange in red foxes in Switzerland proved to be a successful strategy, which underlined the usefulness of questionnaire surveys.


2020 ◽  
Vol 23 (5) ◽  
pp. 1127-1140
Author(s):  
Dawn M. Scott ◽  
Rowenna Baker ◽  
Alexandra Tomlinson ◽  
Maureen J. Berg ◽  
Naomi Charman ◽  
...  

Abstract Urban areas may support high densities of wild carnivores, and pathogens can strongly influence carnivore populations. Red foxes (Vulpes vulpes) are hosts of sarcoptic mange (Sarcoptes scabiei), which infects numerous species, and transmission can be density dependent. In Great Britain, urban red foxes (Vulpes vulpes) have recently increased in population density and undergone range expansions. Here we investigate corresponding changes in urban fox mange prevalence. We predicted a higher prevalence closer to historic epi/enzootics and lower prevalence where urban features reduce fox density and movements, i.e. large areas of public green space, and fragmented habitat, as measured by road length and urban perimeter shape complexity. We visually assessed mange symptoms from georeferenced images of urban foxes submitted online by the public, thus surveying private land on a national scale. We measured the proportion of foxes apparently showing mange and used SATSCAN to identify spatial clusters of high infection risk. Landscape features were extracted from urban layers in GIS to determine associations. Although mange was widespread, we identified a single cluster of high prevalence (37.1%) in Northwest and Central England, which exceeded double mean prevalence overall (15.1%) and mirrors the northward expansion of urban fox distribution. Prevalence was positively correlated with perimeter shape complexity and negatively correlated with distance to the nearest city with mange, although the latter association was weak. Our findings show that citizen science can effectively monitor diseases with highly visible symptoms and suggest that fox movements are influential in explaining spatial patterns of prevalence.


2020 ◽  
Author(s):  
Agnieszka Tylkowska ◽  
Bogumiła Pilarczyk ◽  
Agnieszka Tomza-Marciniak ◽  
Renata Pilarczyk

Abstract Background: The red fox (Vulpes vulpes) is a widely distributed animal in the world. This wild carnivore is also a common host of several dangerous zoonotic parasites, primarily nematodes. Nematodes of red foxes, such as Toxocara canis and Uncinaria stenocephala, can cause numerous health problems in humans and domesticated animals. The aim of the study was to determine the parameters of occurrence of nematodes in red fox (Vulpes vulpes) in north-western Poland. Methods: The study was carried out in north-western Poland. The research material consisted of 620 red foxes (Vulpes vulpes). Parasitological sections of the foxes were taken using the sedimentation and counting technique.Results: The prevalence of infestations with nematodes was 77.3%, while the mean infection intensity was 20.1 per animal. The presence of Toxocara canis, Toxascaris leonina, Uncinaria stenocephala and Trichuris vulpis was noted. The greatest prevalence was presented by Uncinaria stenocephala (34.0%). Male and female foxes displayed a similar prevalence of nematodes. Their presence was recorded in the duodenum, jejunum, ileum and caecum of the foxes, and they were significantly more common in the jejunum than in other parts. The most commonly-observed coinfection was between Uncinaria stenocephala and Toxocara canis. Conclusions: It can be seen that nematodes are present in high numbers among foxes in north-western Poland. This phenomenon certainly contributes to an increased risk of transmission of parasites to humans and domestic animals, and this can represent a threat to health and even life.


2016 ◽  
Author(s):  
Ines Pedro Perpetuo ◽  
Alessandro Felder ◽  
Andrew Pitsillides ◽  
Michael Doube ◽  
Isabel Orriss

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Barbara Moroni ◽  
Samer Angelone ◽  
Jesús M. Pérez ◽  
Anna Rita Molinar Min ◽  
Mario Pasquetti ◽  
...  

Abstract Background In Spain, sarcoptic mange was first described in native wildlife in 1987 in Cazorla Natural Park, causing the death of nearly 95% of the local native population of Iberian ibex (Capra pyrenaica). Since then, additional outbreaks have been identified in several populations of ibex and other wild ungulate species throughout the country. Although the first epizootic outbreak in wildlife was attributed to the introduction of an infected herd of domestic goats, the origin and the cause of its persistence remain unclear. The main aims of this study are to understand (i) the number of Sarcoptes scabiei “strains” circulating in wild ruminant populations in Spain, and (ii) the molecular epidemiological relationships between S. scabiei and its hosts. Methods Ten Sarcoptes microsatellite markers were used to characterize the genetic structure of 266 mites obtained from skin scrapings of 121 mangy wild ruminants between 2011 and 2019 from 11 areas in Spain. Results Seventy-three different alleles and 37 private alleles were detected. The results of this study show the existence of three genetic strains of S. scabiei in the wild ruminant populations investigated. While two genetic clusters of S. scabiei were host- and geography-related, one cluster included multi-host mites deriving from geographically distant populations. Conclusions The molecular epidemiological study of S. scabiei in wild ruminants in Spain indicates that the spreading and persistence of the parasite may be conditioned by host species community composition and the permissiveness of each host population/community to the circulation of individual “strains,” among other factors. Wildlife–livestock interactions and the role of human-driven introduction or trade of wild and domestic animals should be better investigated to prevent further spread of sarcoptic mange in as yet unaffected natural areas of the Iberian Peninsula.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 243
Author(s):  
Julieta Rousseau ◽  
Mónia Nakamura ◽  
Helena Rio-Maior ◽  
Francisco Álvares ◽  
Rémi Choquet ◽  
...  

Sarcoptic mange is globally enzootic, and non-invasive methods with high diagnostic specificity for its surveillance in wildlife are lacking. We describe the molecular detection of Sarcoptes scabiei in non-invasively collected faecal samples, targeting the 16S rDNA gene. We applied this method to 843 Iberian wolf Canis lupus signatus faecal samples collected in north-western Portugal (2006–2018). We further integrated this with serological data (61 samples from wolf and 20 from red fox Vulpes vulpes, 1997–2019) in multi-event capture–recapture models. The mean predicted prevalence by the molecular analysis of wolf faecal samples from 2006–2018 was 7.2% (CI95 5.0–9.4%; range: 2.6–11.7%), highest in 2009. The mean predicted seroprevalence in wolves was 24.5% (CI95 18.5–30.6%; range: 13.0–55.0%), peaking in 2006–2009. Multi-event capture–recapture models estimated 100% diagnostic specificity and moderate diagnostic sensitivity (30.0%, CI95 14.0–53.0%) for the molecular method. Mange-infected individually identified wolves showed a tendency for higher mortality versus uninfected wolves (ΔMortality 0.150, CI95 −0.165–0.458). Long-term serology data highlights the endemicity of sarcoptic mange in wild canids but uncovers multi-year epidemics. This study developed and evaluated a novel method for surveying sarcoptic mange in wildlife populations by the molecular detection of S. scabiei in faecal samples, which stands out for its high specificity and non-invasive character.


Sign in / Sign up

Export Citation Format

Share Document