Study on development of urban growth simulation system of each building lots by CA using GIS and its evaluation

2011 ◽  
Vol 46 (1) ◽  
pp. 19-24
Author(s):  
Satoshi Yamashita ◽  
Zhenjiang Shen ◽  
Mitsuhiko Kawakami
2021 ◽  
Vol 13 (4) ◽  
pp. 2338
Author(s):  
Xinxin Huang ◽  
Gang Xu ◽  
Fengtao Xiao

As one of the 17 Sustainable Development Goals, it is sensible to analysis historical urban land use characteristics and project the potentials of urban sustainable development for a smart city. The cellular automaton (CA) model is the widely applied in simulating urban growth, but the optimum parameters of variables driving urban growth in the model remains to be continued to improve. We propose a novel model integrating an artificial fish swarm algorithm (AFSA) and CA for optimizing parameters of variables in the urban growth model and make a comparison between AFSA-CA and other five models, which is used to study a 40-year urban land growth of Wuhan. We found that the urban growth types from 1995 to 2015 appeared relatively consistent, mainly including infilling, edge-expansion and distant-leap types in Wuhan, which a certain range of urban land growth on the periphery of the central area. Additionally, although the genetic algorithms (GA)-CA model and the AFSA-CA model among the six models due to the distance variables, the parameter value of the GA-CA model is −15.5409 according to the fact that the population (POP) variable should be positively. As a result, the AFSA-CA model regardless of the initial parameter setting is superior to the GA-CA model and the GA-CA model is superior to all the other models. Finally, it is projected that the potentials of urban growth in Wuhan for 2025 and 2035 under three scenarios (natural urban land growth without any restrictions (NULG), sustainable urban land growth with cropland protection and ecological security (SULG), and economic urban land growth with sustainable development and economic development in the core area (EULG)) focus mainly on existing urban land and some new town centers based on AFSA-CA urban growth simulation model. An increasingly precise simulation can determine the potential increase area and quantity of urban land, providing a basis to judge the layout of urban land use for urban planners.


Author(s):  
Haoyan Zhao ◽  
Xingang Kang ◽  
Hua Yang ◽  
Jinghui Meng ◽  
Liu Yang

2021 ◽  
pp. 1-19
Author(s):  
Shuting Zhai ◽  
Yongjiu Feng ◽  
Xinlei Yan ◽  
Yongliang Wei ◽  
Rong Wang ◽  
...  

2017 ◽  
Vol 46 (2) ◽  
pp. 243-263 ◽  
Author(s):  
Pablo Barreira-González ◽  
Francisco Aguilera-Benavente ◽  
Montserrat Gómez-Delgado

Cellular automata-based models have traditionally employed regular grids to represent the geographical environment when simulating urban growth or land use change. Over the last two decades, the scientific community has introduced the use of other spatial structures in an attempt to represent the processes simulated by these models more realistically. Cadastre parcels are a good choice when simulating urban growth at local scales, where pixels or regular cells do not represent the geographic space properly. Furthermore, the implementation and calibration of key factors such as accessibility and suitability have not been sufficiently explored in models employing irregular structures. This paper presents a fully calibrated model to simulate urban growth: Model for Urban Growth simulation using Irregular Cellular Automata. The model uses the irregular structure of the cadastre and its smallest unit: the cadastral parcel. The factors included are based on the traditional Neighbourhood, Accessibility, Suitability and Zoning Status modelling schema, frequently employed in other models. Each factor was implemented and calibrated for the irregular structure employed by the model, and a new approach was explored to introduce a random component that would reproduce illegal growth. Several versions of Model for Urban Growth simulation using Irregular Cellular Automata were produced to calibrate the model within the period 2000–2010. The results obtained from the simulations were compared against observed growth for 2010, adapting the traditional confusion matrix to irregular space. A new metric is proposed, called growth simulation accuracy, which measures how well the model locates urban growth.


Sign in / Sign up

Export Citation Format

Share Document