Iterative Solution of a Nonlinear System Arising in Phase-Change Problems

1990 ◽  
Vol 11 (6) ◽  
pp. 1087-1101 ◽  
Author(s):  
M. A. Williams ◽  
D. G. Wilson
Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. T1-T7 ◽  
Author(s):  
Yanghua Wang

Seismic ray tracing with a path-bending method leads to a nonlinear system that has much stronger nonlinearity in anisotropic media than the counterpart in isotropic media. Any path perturbation causes changes to directional velocities, which depend not only upon the spatial position but also upon the local propagation direction in anisotropic media. To combat the high nonlinearity of the problem, the Newton-type iterative algorithm is modified by enforcing Fermat’s minimum-time principle as a constraint for the solution update, instead of conventional error minimization in the nonlinear system. As the algebraic problem is incorporated with the physical principle, it is able to stabilize the solution for such a highly nonlinear problem as ray tracing in realistically complicated anisotropic media. With this modified algorithm, two ray-tracing schemes are presented. The first scheme involves newly derived raypath equations, which are approximate for anisotropic media but the minimum-time constraint will ensure that the solution steadily converges to the true solution. The second scheme is based on the minimal variation principle. It is more efficient than the first one as it solves a tridiagonal system and does not need to compute the Jacobian and its inverse in each iteration. Even in this second scheme, Fermat’s minimum-time constraint is employed for the solution update, so as to guarantee a robust convergence of the iterative solution in anisotropic media.


Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


Author(s):  
S.S. Kruglov (Jr.) ◽  
◽  
G.L. Patashnikov ◽  
S.S. Kruglov (Sr.) ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document