scholarly journals 8. Cardinality Homogeneous Set Systems, Cycles in Matroids, and Associated Polytopes

2004 ◽  
pp. 99-120 ◽  
Author(s):  
Martin Grötschel
Keyword(s):  
2021 ◽  
Vol 94 ◽  
pp. 103311
Author(s):  
Yemon Choi ◽  
Mahya Ghandehari ◽  
Hung Le Pham
Keyword(s):  

2021 ◽  
Vol 9 (2) ◽  
pp. 1-19
Author(s):  
Z. Li ◽  
A. Vetta

We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form a hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least 0.3666 times the maximin share of the agent. This improves upon the current best known guarantee of 0.2 due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most 0.3738. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.


1992 ◽  
Vol 57 (1) ◽  
pp. 166-171
Author(s):  
Dan Velleman

In [2], Juhasz and Shelah use a forcing argument to show that it is consistent with GCH that there is a 0-dimensional T2 topological space X of cardinality ℵ3 such that every partition of the triples of X into countably many pieces has a nondiscrete (in the topology) homogeneous set. In this paper we will show how to construct such a space using a simplified (ω2, 1)-morass with certain additional structure added to it. The additional structure will be a slight strengthening of a built-in ◊ sequence, analogous to the strengthening of ordinary ◊k to ◊S for a stationary set S ⊆ k.Suppose 〈〈θα∣ ∝ ≤ ω2〉, 〈∝β∣α < β ≤ ω2〉〉 is a neat simplified (ω2, 1)-morass (see [3]). Let ℒ be a language with countably many symbols of all types, and suppose that for each α < ω2, α is an ℒ-structure with universe θα. The sequence 〈α∣α < ω2 is called a built-in ◊ sequence for the morass if for every ℒ-structure with universe ω3 there is some α < ω2 and some f ∈αω2 such that f(α) ≺ , where f(α) is the ℒ-structure isomorphic to α under the isomorphism f. We can strengthen this slightly by assuming that α is only defined for α ∈ S, for some stationary set S ⊆ ω2. We will then say that is a built-in ◊ sequence on levels in S if for every ℒ-structure with universe ω3 there is some α ∈ S and some f ∈ αω2 such that f(α) ≺ .


Author(s):  
Anne Driemel ◽  
André Nusser ◽  
Jeff M. Phillips ◽  
Ioannis Psarros

AbstractThe Vapnik–Chervonenkis dimension provides a notion of complexity for systems of sets. If the VC dimension is small, then knowing this can drastically simplify fundamental computational tasks such as classification, range counting, and density estimation through the use of sampling bounds. We analyze set systems where the ground set X is a set of polygonal curves in $$\mathbb {R}^d$$ R d and the sets $$\mathcal {R}$$ R are metric balls defined by curve similarity metrics, such as the Fréchet distance and the Hausdorff distance, as well as their discrete counterparts. We derive upper and lower bounds on the VC dimension that imply useful sampling bounds in the setting that the number of curves is large, but the complexity of the individual curves is small. Our upper and lower bounds are either near-quadratic or near-linear in the complexity of the curves that define the ranges and they are logarithmic in the complexity of the curves that define the ground set.


2006 ◽  
Vol 98 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Claudson Bornstein ◽  
Celina M.H. de Figueiredo ◽  
Vinícius G.P. de Sá
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 471
Author(s):  
P.-C.G. Vassiliou

A more realistic way to describe a model is the use of intervals which contain the required values of the parameters. In practice we estimate the parameters from a set of data and it is natural that they will be in confidence intervals. In the present study, we study Non-Homogeneous Markov Systems (NHMS) processes for which the required basic parameters are in intervals. We call such processes Non-Homogeneous Markov Set Systems (NHMSS). First we study the set of the relative expected population structure of memberships and we prove that under certain conditions of convexity of the intervals of the parameters the set is compact and convex. Next, we establish that if the NHMSS starts with two different initial distributions sets and allocation probability sets under certain conditions, asymptotically the two expected relative population structures coincide geometrically fast. We continue proving a series of theorems on the asymptotic behavior of the expected relative population structure of a NHMSS and the properties of their limit set. Finally, we present an application for geriatric and stroke patients in a hospital and through it we solve problems that surface in an application.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


COMBINATORICA ◽  
2007 ◽  
Vol 27 (3) ◽  
pp. 399-405
Author(s):  
Zsuzsanna Szaniszló ◽  
Zsolt Tuza
Keyword(s):  

2010 ◽  
Vol 224 (1) ◽  
pp. 1-44 ◽  
Author(s):  
Vladimir I. Danilov ◽  
Alexander V. Karzanov ◽  
Gleb A. Koshevoy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document