scholarly journals Error Bounds for the Lanczos Methods for Approximating Matrix Exponentials

2013 ◽  
Vol 51 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Qiang Ye
2019 ◽  
Vol 60 (1) ◽  
pp. 157-197 ◽  
Author(s):  
Tobias Jawecki ◽  
Winfried Auzinger ◽  
Othmar Koch

Abstract An a posteriori estimate for the error of a standard Krylov approximation to the matrix exponential is derived. The estimate is based on the defect (residual) of the Krylov approximation and is proven to constitute a rigorous upper bound on the error, in contrast to existing asymptotical approximations. It can be computed economically in the underlying Krylov space. In view of time-stepping applications, assuming that the given matrix is scaled by a time step, it is shown that the bound is asymptotically correct (with an order related to the dimension of the Krylov space) for the time step tending to zero. This means that the deviation of the error estimate from the true error tends to zero faster than the error itself. Furthermore, this result is extended to Krylov approximations of $$\varphi $$φ-functions and to improved versions of such approximations. The accuracy of the derived bounds is demonstrated by examples and compared with different variants known from the literature, which are also investigated more closely. Alternative error bounds are tested on examples, in particular a version based on the concept of effective order. For the case where the matrix exponential is used in time integration algorithms, a step size selection strategy is proposed and illustrated by experiments.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1522
Author(s):  
Anna Concas ◽  
Lothar Reichel ◽  
Giuseppe Rodriguez ◽  
Yunzi Zhang

The power method is commonly applied to compute the Perron vector of large adjacency matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically requires fewer iterations than the power method to determine eigenvectors with the desired accuracy. However, the Lanczos method demands more computer storage, which may make it impractical to apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to require less computer storage than the Lanczos method. Computed examples illustrate the theory presented. Applications of the Arnoldi method are also discussed.


2021 ◽  
Vol 53 (2) ◽  
pp. 335-369
Author(s):  
Christian Meier ◽  
Lingfei Li ◽  
Gongqiu Zhang

AbstractWe develop a continuous-time Markov chain (CTMC) approximation of one-dimensional diffusions with sticky boundary or interior points. Approximate solutions to the action of the Feynman–Kac operator associated with a sticky diffusion and first passage probabilities are obtained using matrix exponentials. We show how to compute matrix exponentials efficiently and prove that a carefully designed scheme achieves second-order convergence. We also propose a scheme based on CTMC approximation for the simulation of sticky diffusions, for which the Euler scheme may completely fail. The efficiency of our method and its advantages over alternative approaches are illustrated in the context of bond pricing in a sticky short-rate model for a low-interest environment and option pricing under a geometric Brownian motion price model with a sticky interior point.


Sign in / Sign up

Export Citation Format

Share Document