On the Uniqueness of a Solution to a Stochastic Differential Equation with Driving Martingale and Random Measure

1986 ◽  
Vol 30 (1) ◽  
pp. 169-174
Author(s):  
V. A. Lebedev
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tong Wang ◽  
Hao Liang

We investigate a stochastic differential equation driven by Poisson random measure and its application in a duopoly market for a finite number of consumers with two unknown preferences. The scopes of pricing for two monopolistic vendors are illustrated when the prices of items are determined by the number of buyers in the market. The quantity of buyers is proved to obey a stochastic differential equation (SDE) driven by Poisson random measure which exists a unique solution. We derive the Hamilton-Jacobi-Bellman (HJB) about vendors’ profits and provide a verification theorem about the problem. When all consumers believe a vendor’s guidance about their preferences, the conditions that the other vendor’s profit is zero are obtained. We give an example of this problem and acquire approximate solutions about the profits of the two vendors.


2020 ◽  
Vol 28 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Mohamed El Jamali ◽  
Mohamed El Otmani

AbstractIn this paper, we study the solution of a backward stochastic differential equation driven by a Lévy process with one rcll reflecting barrier. We show the existence and uniqueness of a solution by means of the penalization method when the coefficient is stochastic Lipschitz. As an application, we give a fair price of an American option.


2018 ◽  
Vol 26 (3) ◽  
pp. 143-161
Author(s):  
Ahmadou Bamba Sow ◽  
Bassirou Kor Diouf

Abstract In this paper, we deal with an anticipated backward stochastic differential equation driven by a fractional Brownian motion with Hurst parameter {H\in(1/2,1)} . We essentially establish existence and uniqueness of a solution in the case of stochastic Lipschitz coefficients and prove a comparison theorem in a specific case.


2012 ◽  
Vol 12 (02) ◽  
pp. 1150016 ◽  
Author(s):  
SAÏD HAMADÈNE ◽  
ALEXANDRE POPIER

This paper deals with the problem of existence and uniqueness of a solution for a backward stochastic differential equation (BSDE for short) with one reflecting barrier in the case when the terminal value, the generator and the obstacle process are Lp-integrable with p ∈ ]1, 2[. To construct the solution we use two methods: penalization and Snell envelope. As an application we broaden the class of functions for which the related obstacle partial differential equation problem has a unique viscosity solution.


2011 ◽  
Vol 14 (03) ◽  
pp. 335-351 ◽  
Author(s):  
SVANTE JANSON ◽  
SOKHNA M'BAYE ◽  
PHILIP PROTTER

We give sufficient conditions on the underlying filtration such that all totally inaccessible stopping times have compensators which are absolutely continuous. If a semimartingale, strong Markov process X has a representation as a solution of a stochastic differential equation driven by a Wiener process, Lebesgue measure, and a Poisson random measure, then all compensators of totally inaccessible stopping times are absolutely continuous with respect to the minimal filtration generated by X. However Çinlar and Jacod have shown that all semimartingale strong Markov processes, up to a change of time and slightly of space, have such a representation.


2004 ◽  
Vol 11 (3) ◽  
pp. 515-526
Author(s):  
B. Mamporia

Abstarct A sufficient condition is given for the existence of a solution to a stochastic differential equation in an arbitrary Banach space. The method is based on the concept of covariance operator and a special construction of the Itô stochastic integral in an arbitrary Banach space.


Sign in / Sign up

Export Citation Format

Share Document