scholarly journals An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

2012 ◽  
Vol 41 (5) ◽  
pp. 1299-1317 ◽  
Author(s):  
Amit Chakrabarti ◽  
Oded Regev
2017 ◽  
Vol 17 (1&2) ◽  
pp. 106-116
Author(s):  
Jop Briet ◽  
Jeroen Zuiddam

After Bob sends Alice a bit, she responds with a lengthy reply. At the cost of a factor of two in the total communication, Alice could just as well have given Bob her two possible replies at once without listening to him at all, and have him select which one applies. Motivated by a conjecture stating that this form of “round elimination” is impossible in exact quantum communication complexity, we study the orthogonal rank and a symmetric variant thereof for a certain family of Cayley graphs. The orthogonal rank of a graph is the smallest number d for which one can label each vertex with a nonzero d-dimensional complex vector such that adjacent vertices receive orthogonal vectors. We show an exp(n) lower bound on the orthogonal rank of the graph on {0, 1} n in which two strings are adjacent if they have Hamming distance at least n/2. In combination with previous work, this implies an affirmative answer to the above conjecture.


Author(s):  
Rohitkumar R Upadhyay

Abstract: Hamming codes for all intents and purposes are the first nontrivial family of error-correcting codes that can actually correct one error in a block of binary symbols, which literally is fairly significant. In this paper we definitely extend the notion of error correction to error-reduction and particularly present particularly several decoding methods with the particularly goal of improving the error-reducing capabilities of Hamming codes, which is quite significant. First, the error-reducing properties of Hamming codes with pretty standard decoding definitely are demonstrated and explored. We show a sort of lower bound on the definitely average number of errors present in a decoded message when two errors for the most part are introduced by the channel for for all intents and purposes general Hamming codes, which actually is quite significant. Other decoding algorithms are investigated experimentally, and it generally is definitely found that these algorithms for the most part improve the error reduction capabilities of Hamming codes beyond the aforementioned lower bound of for all intents and purposes standard decoding. Keywords: coding theory, hamming codes, hamming distance


1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.


2016 ◽  
Vol 16 (3) ◽  
pp. 507-522 ◽  
Author(s):  
Yanhui Su ◽  
Lizhen Chen ◽  
Xianjuan Li ◽  
Chuanju Xu

AbstractThe Ladyženskaja–Babuška–Brezzi (LBB) condition is a necessary condition for the well-posedness of discrete saddle point problems stemming from discretizing the Stokes equations. In this paper, we prove the LBB condition and provide the (optimal) lower bound for this condition for the triangular spectral method proposed by L. Chen, J. Shen, and C. Xu in [3]. Then this lower bound is used to derive an error estimate for the pressure. Some numerical examples are provided to confirm the theoretical estimates.


2021 ◽  
Vol 22 (4) ◽  
pp. 1-30
Author(s):  
Sam Buss ◽  
Dmitry Itsykson ◽  
Alexander Knop ◽  
Artur Riazanov ◽  
Dmitry Sokolov

This article is motivated by seeking lower bounds on OBDD(∧, w, r) refutations, namely, OBDD refutations that allow weakening and arbitrary reorderings. We first work with 1 - NBP ∧ refutations based on read-once nondeterministic branching programs. These generalize OBDD(∧, r) refutations. There are polynomial size 1 - NBP(∧) refutations of the pigeonhole principle, hence 1-NBP(∧) is strictly stronger than OBDD}(∧, r). There are also formulas that have polynomial size tree-like resolution refutations but require exponential size 1-NBP(∧) refutations. As a corollary, OBDD}(∧, r) does not simulate tree-like resolution, answering a previously open question. The system 1-NBP(∧, ∃) uses projection inferences instead of weakening. 1-NBP(∧, ∃ k is the system restricted to projection on at most k distinct variables. We construct explicit constant degree graphs G n on n vertices and an ε > 0, such that 1-NBP(∧, ∃ ε n ) refutations of the Tseitin formula for G n require exponential size. Second, we study the proof system OBDD}(∧, w, r ℓ ), which allows ℓ different variable orders in a refutation. We prove an exponential lower bound on the complexity of tree-like OBDD(∧, w, r ℓ ) refutations for ℓ = ε log n , where n is the number of variables and ε > 0 is a constant. The lower bound is based on multiparty communication complexity.


2018 ◽  
Vol 29 (08) ◽  
pp. 1311-1329
Author(s):  
Michał Adamczyk ◽  
Mai Alzamel ◽  
Panagiotis Charalampopoulos ◽  
Jakub Radoszewski

Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes. We first present an on-line algorithm for obtaining a palindromic decomposition of a string of length [Formula: see text] with the minimal total gap length in time [Formula: see text] and space [Formula: see text], where [Formula: see text] is the number of allowed gaps in the decomposition. We then consider a decomposition of the string in maximal [Formula: see text]-palindromes (i.e. palindromes with [Formula: see text] errors under the edit or Hamming distance) and [Formula: see text] allowed gaps. We present an algorithm to obtain such a decomposition with the minimal total gap length in time [Formula: see text] and space [Formula: see text]. Finally, we provide an implementation of our algorithms.


2019 ◽  
Vol 33 (6) ◽  
pp. 533-543
Author(s):  
Artur Czumaj ◽  
Christian Konrad

AbstractThe problem of detecting network structures plays a central role in distributed computing. One of the fundamental problems studied in this area is to determine whether for a given graph H, the input network contains a subgraph isomorphic to H or not. We investigate this problem for H being a clique $$K_{\ell }$$ K ℓ in the classical distributed model, where the communication topology is the same as the topology of the underlying network, and with limited communication bandwidth on the links. Our first and main result is a lower bound, showing that detecting $$K_{\ell }$$ K ℓ requires $$\varOmega (\sqrt{n} / {\mathfrak {b}})$$ Ω ( n / b ) communication rounds, for every $$4 \le \ell \le \sqrt{n}$$ 4 ≤ ℓ ≤ n , and $$\varOmega (n / (\ell {\mathfrak {b}}))$$ Ω ( n / ( ℓ b ) ) rounds for every $$\ell \ge \sqrt{n}$$ ℓ ≥ n , where $${\mathfrak {b}}$$ b is the bandwidth of the communication links. This result is obtained by using a reduction to the set disjointness problem in the framework of two-party communication complexity. We complement our lower bound with a two-party communication protocol for listing all cliques in the input graph, which up to constant factors communicates the same number of bits as our lower bound for $$K_4$$ K 4 detection. This demonstrates that our lower bound cannot be improved using the two-party communication framework.


Sign in / Sign up

Export Citation Format

Share Document