scholarly journals Forward Self-Similar Solutions to the Viscoelastic Navier--Stokes Equation with Damping

2017 ◽  
Vol 49 (1) ◽  
pp. 501-529 ◽  
Author(s):  
Baishun Lai ◽  
Junyu Lin ◽  
Changyou Wang
2019 ◽  
Vol 26 (1/2) ◽  
pp. 167-178 ◽  
Author(s):  
Dongming Wei ◽  
Samer Al-Ashhab

The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian coordinates with Eulerian description, for incompressible non-Newtonian fluids, is considered. The Ladyzhenskaya model, with a non-linear velocity dependent stress tensor is adopted, and leads to the governing equation of interest. The reduction is based on a self-similar transformation as demonstrated in existing literature, for two spatial variables and one time variable, resulting in an ODE defined on a semi-infinite domain. In our search for classical solutions, existence and uniqueness will be determined depending on the signs of two parameters with physical interpretation in the equation. Illustrations are included to highlight some of the main results.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Sign in / Sign up

Export Citation Format

Share Document