Perfect Matching and Hamilton Tight Cycle Decomposition of Complete $n$-Balanced $r$-Partite $k$-Uniform Hypergraphs

2022 ◽  
Vol 36 (1) ◽  
pp. 241-251
Author(s):  
Zequn Lv ◽  
Mei Lu ◽  
Yi Zhang
2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


2010 ◽  
Vol 21 (06) ◽  
pp. 905-924 ◽  
Author(s):  
MAREK KARPIŃSKI ◽  
ANDRZEJ RUCIŃSKI ◽  
EDYTA SZYMAŃSKA

In this paper we consider the computational complexity of deciding the existence of a perfect matching in certain classes of dense k-uniform hypergraphs. It has been known that the perfect matching problem for the classes of hypergraphs H with minimum ((k - 1)–wise) vertex degreeδ(H) at least c|V(H)| is NP-complete for [Formula: see text] and trivial for c ≥ ½, leaving the status of the problem with c in the interval [Formula: see text] widely open. In this paper we show, somehow surprisingly, that ½ is not the threshold for tractability of the perfect matching problem, and prove the existence of an ε > 0 such that the perfect matching problem for the class of hypergraphs H with δ(H) ≥ (½ - ε)|V(H)| is solvable in polynomial time. This seems to be the first polynomial time algorithm for the perfect matching problem on hypergraphs for which the existence problem is nontrivial. In addition, we consider parallel complexity of the problem, which could be also of independent interest.


10.37236/5660 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Arrigo Bonisoli ◽  
Simona Bonvicini

Let $G$ be a connected graph with an even number of edges. We show that if the subgraph of $G$ induced by the vertices of odd degree has a perfect matching, then the line graph of $G$ has a $2$-factor whose connected components are cycles of even length (an even $2$-factor). For a cubic graph $G$, we also give a necessary and sufficient condition so that the corresponding line graph $L(G)$ has an even cycle decomposition of index $3$, i.e., the edge-set of $L(G)$ can be partitioned into three $2$-regular subgraphs whose connected components are cycles of even length. The more general problem of the existence of even cycle decompositions of index $m$ in $2d$-regular graphs is also addressed.


1996 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Colin Cooper ◽  
Alan Frieze ◽  
Michael Molloy ◽  
Bruce Reed

We show that r-regular, s-uniform hypergraphs contain a perfect matching with high probability (whp), provided The Proof is based on the application of a technique of Robinson and Wormald [7, 8]. The space of hypergraphs is partitioned into subsets according to the number of small cycles in the hypergraph. The difference in the expected number of perfect matchings between these subsets explains most of the variance of the number of perfect matchings in the space of hypergraphs, and is sufficient to prove existence (whp), using the Chebychev Inequality.


10.37236/7658 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Yi Zhang ◽  
Yi Zhao ◽  
Mei Lu

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without an isolated vertex. Suppose that $H$ is a 3-uniform hypergraph whose order $n$ is sufficiently large and divisible by $3$. If $H$ contains no isolated vertex and $\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different space barrier from the one for the corresponding Dirac problem.


2014 ◽  
Vol 45 ◽  
pp. 63-66
Author(s):  
Asghar Madadi ◽  
Rashid Zaare-Nahandi

Sign in / Sign up

Export Citation Format

Share Document