Integral Limit Theorems for Nonlinear Boundary Crossing Time for Markov Chain

2013 ◽  
Vol 57 (1) ◽  
pp. 172-178
Author(s):  
F. Ragimov ◽  
F. Azizov
1978 ◽  
Vol 15 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Anthony G. Pakes

This paper develops the notion of the limiting age of an absorbing Markov chain, conditional on the present state. Chains with a single absorbing state {0} are considered and with such a chain can be associated a return chain, obtained by restarting the original chain at a fixed state after each absorption. The limiting age, A(j), is the weak limit of the time given Xn = j (n → ∞).A criterion for the existence of this limit is given and this is shown to be fulfilled in the case of the return chains constructed from the Galton–Watson process and the left-continuous random walk. Limit theorems for A (J) (J → ∞) are given for these examples.


2011 ◽  
Vol 43 (3) ◽  
pp. 782-813 ◽  
Author(s):  
M. Jara ◽  
T. Komorowski

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn,n≥ 0} and two observables, τ(∙) andV(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn,n≥ 0} is a sequence of independent and identically distributed random variables.


1988 ◽  
Vol 25 (1) ◽  
pp. 81-88 ◽  
Author(s):  
J. Glaz ◽  
B. Johnson

Let Xi, i ≧ 1, be a sequence of independent N(0, 1) random variables and Sj,m = Xj + · ·· + Xj+m–1, the jth moving sum. Let τ m = inf{j ≧ 1 : Sj,m > a} + m – 1, the boundary crossing time. Approximation in the spirit of Glaz and Johnson (1984), (1986) and Samuel-Cahn (1983) are given for Pr(τm > n), E(τ m), and σ (τ m),the standard deviation of τm.


1978 ◽  
Vol 15 (01) ◽  
pp. 65-77 ◽  
Author(s):  
Anthony G. Pakes

This paper develops the notion of the limiting age of an absorbing Markov chain, conditional on the present state. Chains with a single absorbing state {0} are considered and with such a chain can be associated a return chain,obtained by restarting the original chain at a fixed state after each absorption. The limiting age,A(j), is the weak limit of the timegivenXn=j(n → ∞).A criterion for the existence of this limit is given and this is shown to be fulfilled in the case of the return chains constructed from the Galton–Watson process and the left-continuous random walk. Limit theorems forA(J) (J →∞) are given for these examples.


1977 ◽  
Vol 16 (4) ◽  
pp. 564-573
Author(s):  
B. V. Levin ◽  
N. M. Timofeev

1999 ◽  
Vol 36 (2) ◽  
pp. 415-432 ◽  
Author(s):  
Frank Ball

In this paper, central limit theorems for multivariate semi-Markov sequences and processes are obtained, both as the number of jumps of the associated Markov chain tends to infinity and, if appropriate, as the time for which the process has been running tends to infinity. The theorems are widely applicable since many functions defined on Markov or semi-Markov processes can be analysed by exploiting appropriate embedded multivariate semi-Markov sequences. An application to a problem in ion channel modelling is described in detail. Other applications, including to multivariate stationary reward processes, counting processes associated with Markov renewal processes, the interpretation of Markov chain Monte Carlo runs and statistical inference on semi-Markov models are briefly outlined.


2019 ◽  
Vol 34 (2) ◽  
pp. 235-257
Author(s):  
Peter Spreij ◽  
Jaap Storm

In this paper, we study limit behavior for a Markov-modulated binomial counting process, also called a binomial counting process under regime switching. Such a process naturally appears in the context of credit risk when multiple obligors are present. Markov-modulation takes place when the failure/default rate of each individual obligor depends on an underlying Markov chain. The limit behavior under consideration occurs when the number of obligors increases unboundedly, and/or by accelerating the modulating Markov process, called rapid switching. We establish diffusion approximations, obtained by application of (semi)martingale central limit theorems. Depending on the specific circumstances, different approximations are found.


Sign in / Sign up

Export Citation Format

Share Document