On the Stability of Null-Space Methods for KKT Systems

1997 ◽  
Vol 18 (4) ◽  
pp. 938-958 ◽  
Author(s):  
Roger Fletcher ◽  
Tom Johnson
Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R121-R131 ◽  
Author(s):  
Hu Jin ◽  
George A. McMechan

A 2D velocity model was estimated by tomographic imaging of overlapping focusing operators that contain one-way traveltimes, from common-focus points to receivers in an aperture along the earth’s surface. The stability and efficiency of convergence and the quality of the resulting models were improved by a sequence of ideas. We used a hybrid parameterization that has an underlying grid, upon which is superimposed a flexible, pseudolayer model. We first solved for the low-wavenumber parts of the model (approximating it as constant-velocity pseudo layers), then we allowed intermediate wavenumbers (allowing the layers to have linear velocity gradients), and finally did unconstrained iterations to add the highest wavenumber details. Layer boundaries were implicitly defined by focus points that align along virtual marker (reflector) horizons. Each focus point sampled an area bounded by the first and last rays in the data aperture at the surface; this reduced the amount of computation and the size of the effective null space of the solution. Model updates were performed simultaneously for the velocities and the local focus point positions in two steps; local estimates were performed independently by amplitude semblance for each focusing operator within its area of dependence, followed by a tomographic weighting of the local estimates into a global solution for each grid point, subject to the constraints of the parameterization used at that iteration. The system of tomographic equations was solved by simultaneous iterative reconstruction, which is equivalent to a least-squares solution, but it does not involve a matrix inversion. The algorithm was successfully applied to synthetic data for a salt dome model using a constant-velocity starting model; after a total of 25 iterations, the velocity error was [Formula: see text] and the final mean focal point position error was [Formula: see text] wavelength.


Robotica ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1155-1167 ◽  
Author(s):  
Hamid Sadeghian ◽  
Luigi Villani ◽  
Mehdi Keshmiri ◽  
Bruno Siciliano

SUMMARYThis paper presents a dynamic-level control algorithm to meet simultaneously multiple desired tasks based on allocated priorities for redundant robotic systems. It is shown that this algorithm can be treated as a general framework to achieve control over the whole body of the robot. The control law is an extension of the well-known acceleration-based control to the redundant robots, and considers also possible interactions with the environment occurring at any point of the robot body. The stability of this algorithm is shown and some of the previously developed results are formulated using this approach. To handle the interaction on robot body, null space impedance control is developed within the multi-priority framework. The effectiveness of the proposed approaches is evaluated by means of computer simulation.


2020 ◽  
Vol 42 (11) ◽  
pp. 2011-2019
Author(s):  
Chengcheng Ma ◽  
Chunsheng Liu ◽  
Jiazhen Yao

In this paper, a new fault tolerant control scheme with control allocation is presented. The pseudo-inverse along the null-space control allocation is applied to the fault tolerant control system to handle the actuator constraints. The stability of the overall closed-loop system is proved via the small gain theory. The null-space vector is viewed as uncertainty, and is disposed by an integral sliding mode controller and a robust controller. The simulation results show that the new method can solve both failure scenarios and actuator saturation problems well.


2021 ◽  
Vol 102 (1) ◽  
Author(s):  
Andre Coelho ◽  
Yuri Sarkisov ◽  
Xuwei Wu ◽  
Hrishik Mishra ◽  
Harsimran Singh ◽  
...  

AbstractThis paper introduces a passivity-based control framework for multi-task time-delayed bilateral teleoperation and shared control of kinematically-redundant robots. The proposed method can be seen as extension of state-of-the art hierarchical whole-body control as it allows for some of the tasks to be commanded by a remotely-located human operator through a haptic device while the others are autonomously performed. The operator is able to switch among tasks at any time without compromising the stability of the system. To enforce the passivity of the communication channel as well as to dissipate the energy generated by the null-space projectors used to enforce the hierarchy among the tasks, the Time-Domain Passivity Approach (TDPA) is applied. The efficacy of the approach is demonstrated through its application to the DLR Suspended Aerial Manipulator (SAM) in a real telemanipulation scenario with variable time delay, jitter, and package loss.


Author(s):  
Jennifer Scott ◽  
Miroslav Tůma

AbstractNull-space methods have long been used to solve large sparse n × n symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k × k (2, 2) block is non zero and small (k ≪ n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel null-space approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.


Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Bojan Nemec ◽  
Leon Žlajpah ◽  
Damir Omrčen

SUMMARYThis paper deals with the stability of null-space velocity control algorithms in extended operational space for redundant robots. We compare the performance of the control algorithm based on the minimal null-space projection and generalized-inverse-based projection into the Jacobian null-space. We show how the null-space projection affects the performance of the null-space tracking algorithm. The results are verified with the simulation and real implementation on a redundant mobile robot composed of 3 degrees of freedom (DOFs) mobile platform and 7-DOF robot arm.


1994 ◽  
Vol 77 (3) ◽  
pp. 777-781 ◽  
Author(s):  
Stephen L R Ellison ◽  
Maurice G Cox ◽  
Alastatr B Forbes ◽  
Bernard P Butler ◽  
Simon A Hannaby ◽  
...  

Abstract Analytical chemistry makes use of a wide range of basic statistical operations, including means; standard deviations; significance tests based on assumed distributions; and linear, polynomial, and multivariate regression. The effects of limited numerical precision, poor choice of algorithm, and extreme dynamic range on these common statistical operations are discussed. The effects of incorrect choice of algorithm on calculations of basic statistical parameters and calibration lines are illustrated by examples. Some approaches to validation of such software are considered. The preparation of reference data sets for testing statistical software is discussed. The use of ‘null space’ methods for producing reference data sets is described, and an example is given. These data sets have well-characterized properties and can be used to test the accuracy of basic statistical procedures. Specific properties that are controlled include the numerical precision required to represent the sets exactly and the analytically correct answers. A further property of some of the data sets under development is the predictability of the deviation from the expected results resulting from poor choice of algorithm.


Sign in / Sign up

Export Citation Format

Share Document