Additive Schwarz Methods for the h-p Version of the Finite Element Method in Two Dimensions

1997 ◽  
Vol 18 (5) ◽  
pp. 1267-1288 ◽  
Author(s):  
Benqi Guo ◽  
Weiming Cao





2018 ◽  
Vol 3 (1) ◽  
pp. 01
Author(s):  
Nassima M ziou ◽  
Hani Benguesmia ◽  
Hilal Rahali

The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.



Author(s):  
Maximiliano A. Velez ◽  
Amador M. Guzman

The present numerical work describes the simulation and analysis of the absorptance and absorption efficiency of a solar cell, where the effect of utilizing photonic crystals as an active material of the cell was studied. The study was performed by numerical simulations using a computational code based on the Finite Element Method [1]. The results were obtained for photonic crystals with periodicity in both one and two dimensions [2]. In the first one, periodicity, thickness of the active material, and distance with respect to the electrode for hole collection were varied, and two organic materials for the active zone were tested, P3HT:PCBM and TDPT:PCBM. In the case of crystals with periodicity in two dimensions, only the period in one of the two dimensions was varied, based on the cell with the highest efficiency of absorption proposed for cells with periodic photonic crystals in one dimension. All simulations were obtained for waves with TM polarization, zero angle of incidence and wavelengths between 400 and 700 nm.



2010 ◽  
Vol 10 (2) ◽  
pp. 164-176 ◽  
Author(s):  
M. Dryja ◽  
M. Sarkis

AbstractA second order elliptic problem with highly discontinuous coefficients has been considered. The problem is discretized by two methods: 1) continuous finite element method (FEM) and 2) composite discretization given by a continuous FEM inside the substructures and a discontinuous Galerkin method (DG) across the boundaries of these substructures. The main goal of this paper is to design and analyze parallel algorithms for the resulting discretizations. These algorithms are additive Schwarz methods (ASMs) with special coarse spaces spanned by functions that are almost piecewise constant with respect to the substructures for the first discretization and by piecewise constant functions for the second discretization. It has been established that the condition number of the preconditioned systems does not depend on the jumps of the coefficients across the substructure boundaries and outside of a thin layer along the substructure boundaries. The algorithms are very well suited for parallel computations.



Sign in / Sign up

Export Citation Format

Share Document