scholarly journals Sex-related differences in fuel utilization and hormonal response to exercise: implications for individuals with type 1 diabetes

2018 ◽  
Vol 43 (6) ◽  
pp. 541-552 ◽  
Author(s):  
Nicole K. Brockman ◽  
Jane E. Yardley

Sex-related differences in metabolic and neuroendocrine response to exercise in individuals without diabetes have been well established. Men and women differ in fuel selection during exercise, in which women rely to a greater extent on fat oxidation, whereas males rely mostly on carbohydrate oxidation for energy production. The difference in fuel selection appears to be mediated by sex-related differences in hormonal (including catecholamines, growth hormone, and estrogen) response to different types and intensities of exercise. In general, men exhibit an amplified counter-regulatory response to exercise, with elevated levels of catecholamines compared with women. However, women exhibit greater sensitivity to the lipolytic action of the catecholamines and deplete less of their glycogen stores than men during exercise, which suggests that women may experience a greater defense in blood glucose control after exercise than men. Conversely, little is known about sex-related differences in response to exercise in individuals with type 1 diabetes (T1D). A single study investigating sex-related differences in response to moderate aerobic exercise in individuals with T1D found sex-related differences in catecholamine response and fuel selection, but changes in blood glucose were not measured. To our knowledge, there are no studies investigating sex-related differences in blood glucose responses to different types and intensities of exercise in individuals with T1D. This review summarizes sex-related differences in exercise responses that could potentially impact blood glucose levels during exercise in individuals with T1D and highlights the need for further research.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 776-P
Author(s):  
RACHEL BRANDT ◽  
MINSUN PARK ◽  
LAURIE T. QUINN ◽  
MINSEUNG CHU ◽  
YOUNGKWAN SONG ◽  
...  

1990 ◽  
Vol 7 (8) ◽  
pp. 695-699 ◽  
Author(s):  
B.H.R. Wolffenbuttel ◽  
B.M. Ouwerkerk ◽  
B.F.E. Veldhuyzen ◽  
P.H.L.M. Geelhoed-Duijvestijn ◽  
G. Jakobsen ◽  
...  

2021 ◽  
Author(s):  
Stella Tsichlaki ◽  
Lefteris Koumakis ◽  
Manolis Tsiknakis

BACKGROUND Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient's blood glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur due to a variety of causes, such as taking additional doses of insulin, skipping meals, or over-exercising. Mainly, the symptoms of hypoglycemia range from mild dysphoria to more severe conditions, if not detected in a timely manner. OBJECTIVE In this review, we report on innovative detection techniques and tactics for identifying and preventing hypoglycemic episodes, focusing on type 1 diabetes. METHODS A systematic literature search following the PRISMA guidelines was performed focusing on the “PUBMED”, “Google Scholar”, “IEEE Xplore” and “ACM” digital libraries to find articles about technologies related to hypoglycemia detection in type 1 diabetes patients. RESULTS The presented approaches have been utilized or devised to enhance blood glucose monitoring and boost its efficacy to forecast future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected nineteen predictive models for hypoglycemia, specifically on type 1 diabetes, utilizing a wide range of algorithmic methodologies, spanning from statistics (10%) to machine learning (52%) and deep learning (38%). The algorithms employed most are the kalman filtering and classification models (SVM, KNN, random forests). The performance of the predictive models was found overall to be satisfactory, reaching accuracies between 70% and 99% which proves that such technologies are capable to facilitate the prediction of T1D hypoglycemia. CONCLUSIONS It is evident that CGM can improve the glucose control in diabetes but predictive models for hypo- and hyper- glycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen to be the next step for mHealth in T1D. Prospective studies are required to demonstrate the value of such models in real-life mHealth interventions.


2020 ◽  
pp. 13-49
Author(s):  
Eileen O'Donnell ◽  
Liam O'Donnell

The diagnosis of Type 1 Diabetes (T1D) will come as an unwelcome surprise to most people. Within a short period of time, the person will have to come to understand and manage this chronic illness. The terminology associated with the T1D condition will also be totally new to the person: diabetes mellitus, pancreas, hyperglycaemia (hyper), hypoglycaemia (hypo), bolus (fast acting insulin), basal (slow acting insulin), ketones and blood glucose levels. The purpose of this article is to assist newly diagnosed patients' understanding of T1D, people who are already living with T1D, carers of people with T1D, partners and family members of someone with T1D, work colleagues, and friends who participate in the same sporting activities or go on holiday with a person who has T1D. In addition, this article reviews how people living with T1D can still enjoy exercise and maintain the best quality of life possible; whilst controlling the blood glucose levels in their body for the rest of their lives to prevent the onset of complications associated with diabetes.


2009 ◽  
Vol 19 (7) ◽  
pp. 309-315
Author(s):  
Timothy G. Barrett ◽  
Nils P. Krone

Sign in / Sign up

Export Citation Format

Share Document