Electron microscopy of the conidial protoplasts of Neurospova crassa

1968 ◽  
Vol 46 (12) ◽  
pp. 1561-1564 ◽  
Author(s):  
M. S. Manocha

Micromorphology of conidia resembles that of young hyphae except for the details of the cell wall structure, which is thicker and prominently developed in unhydrated conidia. Although mitochondria and endoplasmic reticulum are present in ungerminated conidia, these organelles increase greatly during germination, and vacuoles increase in size and number. Naked protoplasts protrude through a small pore in the partially digested wall of the conidium. Free protoplasts synthesize new wall material when incubated in a regenerative mixture. Similarities and differences between conidial germination and protoplast formation and regeneration are noted.

BioResources ◽  
2006 ◽  
Vol 1 (2) ◽  
pp. 220-232 ◽  
Author(s):  
H. P. S. Abdul Khalil ◽  
M. Siti Alwani ◽  
A. K. Mohd Omar

The chemical composition, anatomical characteristics, lignin distribution, and cell wall structure of oil palm frond (OPF), coconut (COIR), pine-apple leaf (PALF), and banana stem (BS) fibers were analyzed. The chemical composition of fiber was analyzed according to TAPPI Methods. Light microscopy (LM) and transmission electron microscopy (TEM) were used to observe and determine the cell wall structure and lignin distribution of various agro-waste fibers. The results revealed differences in anatomical characteristics, lignin distributions, and cell wall structure of the different types of fibers investigated. Nevertheless, transmission electron microscopy (TEM) micrographs have confirmed that the well wall structure, in each case, could be described in terms of a classical cell wall structure, consisting of primary (P) and secondary (S 1 , S 2 , and S 3 ) layers.


2013 ◽  
Vol 76 (8) ◽  
pp. 829-834 ◽  
Author(s):  
Celso Sant'Anna ◽  
Lilian T. Costa ◽  
Yuri Abud ◽  
Lucas Biancatto ◽  
Flávio Costa Miguens ◽  
...  

1989 ◽  
Vol 67 (7) ◽  
pp. 1938-1943 ◽  
Author(s):  
Kimberly D. Gwinn ◽  
Margaret E. Daub ◽  
Pi-Yu Huang

Freshly isolated protoplasts of Cercospora nicotianae and Neurospora crassa are equally sensitive to the toxin, cercosporin. After a 12-h regeneration period C. nicotianae cells are resistant, but N. crassa cells remain sensitive. Production of cell wall material by both C. nicotianae and N. crassa was monitored by transmission electron microscopy and fluorescence microscopy. Freshly isolated protoplasts lacked cell wall material as shown by observation with electron microscopy and inability to bind the fluorescent brightener Tinopal 5BM. After a 12-h incubation, electron micrographs of regenerating protoplasts showed well-developed cell walls for N. crassa, whereas C. nicotianae displayed variations in wall structure. Ability to bind Tinopal 5BM was acquired very early by regenerating cells of both fungi. Percentages of cells that could bind Concanavalin A did not differ between the two fungi at any time after protoplast isolation. Ability to bind wheat germ agglutinin and Bandeiraea simplicifolia agglutinin II was detected earlier in C. nicotianae than in N. crassa. These data demonstrate the presence of cell wall materials in both C. nicotianae and N. crassa at the time that differential sensitivity to cercosporin is observed. These results suggest that components in the C. nicotianae cell wall may play a role in cercosporin resistance.


Anatomical of cell wall structure on Schizostachyum brachycladum examined. The harvested two-year-old and four-year-old bamboo culms segregated into the bottom, middle and top portions. The samples then undergo the Light Microscopy (LM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) to determine their structure such as a vascular bundle, parenchyma, and sclerenchyma. Results show the surface of bamboo was visualized by LM to decide on their structural figure. In this part, 2-year age indicated that higher numbers of vascular bundle and average of mean compared to the 4-year S. brachycladum. Followed by a specific study of cell wall structure using SEM with highlighted 4-year S. brachycladum had more complex of morphology structure compared to the 2-year-old. Later on, TEM illustrated to shows most depth anatomically structure of bamboo such as middle lamella, primary and secondary walls.


Sign in / Sign up

Export Citation Format

Share Document