scholarly journals Macroscopic and Microscopic Characteristics of 2- and 4-Year-Old Schizostachyum brachycladum

Anatomical of cell wall structure on Schizostachyum brachycladum examined. The harvested two-year-old and four-year-old bamboo culms segregated into the bottom, middle and top portions. The samples then undergo the Light Microscopy (LM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) to determine their structure such as a vascular bundle, parenchyma, and sclerenchyma. Results show the surface of bamboo was visualized by LM to decide on their structural figure. In this part, 2-year age indicated that higher numbers of vascular bundle and average of mean compared to the 4-year S. brachycladum. Followed by a specific study of cell wall structure using SEM with highlighted 4-year S. brachycladum had more complex of morphology structure compared to the 2-year-old. Later on, TEM illustrated to shows most depth anatomically structure of bamboo such as middle lamella, primary and secondary walls.

BioResources ◽  
2006 ◽  
Vol 1 (2) ◽  
pp. 220-232 ◽  
Author(s):  
H. P. S. Abdul Khalil ◽  
M. Siti Alwani ◽  
A. K. Mohd Omar

The chemical composition, anatomical characteristics, lignin distribution, and cell wall structure of oil palm frond (OPF), coconut (COIR), pine-apple leaf (PALF), and banana stem (BS) fibers were analyzed. The chemical composition of fiber was analyzed according to TAPPI Methods. Light microscopy (LM) and transmission electron microscopy (TEM) were used to observe and determine the cell wall structure and lignin distribution of various agro-waste fibers. The results revealed differences in anatomical characteristics, lignin distributions, and cell wall structure of the different types of fibers investigated. Nevertheless, transmission electron microscopy (TEM) micrographs have confirmed that the well wall structure, in each case, could be described in terms of a classical cell wall structure, consisting of primary (P) and secondary (S 1 , S 2 , and S 3 ) layers.


1977 ◽  
Vol 55 (17) ◽  
pp. 2348-2357 ◽  
Author(s):  
J. P. Tewari ◽  
W. P. Skoropad

The structure and development of oospores of Albugo candida in the stagheads in rapeseed (Brassica campestris) were investigated by light microscopy, transmission electron microscopy of ultrathin sections, and scanning electron microscopy. Development of an oospore, in general, is similar to that in Pythium. A reaction zone is formed in the oogonial wall at the point of contact by the fertilization tube of the antheridium. The oospore has a highly differentiated five-layered cell wall. The periplasm appears to play an active role in deposition of the cell wall of the oospore. Contents of the periplasm do not disappear after maturation of the oospore; instead, they forma persistent material between it and the oogonial wall. Hence, functionally, the oospore wall complex has two additional layers. Longevity of the oospore may be due to the heavily fortified cell wall.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Venita F. Allison ◽  
J. E. Ubelaker ◽  
J. H. Martin

It has been suggested that parasitism results in a reduction of sensory structures which concomitantly reflects a reduction in the complexity of the nervous system. The present study tests this hypothesis by examining the fine morphology and the distribution of sensory receptors for two species of aspidogastrid trematodes by transmission and scanning electron microscopy. The species chosen are an ectoparasite, Cotylaspis insignis and an endoparasite, Aspidogaster conchicola.Aspidogaster conchicola and Cotylaspis insignis were obtained from natural infections of clams, Anodonta corpulenta and Proptera purpurata. The specimens were fixed for transmission electron microscopy in phosphate buffered paraformaldehyde followed by osmic acid in the same buffer, dehydrated in an ascending series of ethanol solutions and embedded in Epon 812.


Author(s):  
Thomas P. Turnbull ◽  
W. F. Bowers

Until recently the prime purposes of filters have been to produce clear filtrates or to collect particles from solution and then remove the filter medium and examine the particles by transmission electron microscopy. These filters have not had the best characteristics for scanning electron microscopy due to the size of the pores or the surface topography. Advances in polymer chemistry and membrane technology resulted in membranes whose characteristics make them versatile substrates for many scanning electron microscope applications. These polysulphone type membranes are anisotropic, consisting of a very thin (0.1 to 1.5 μm) dense skin of extremely fine, controlled pore texture upon a much thicker (50 to 250μm), spongy layer of the same polymer. Apparent pore diameters can be controlled in the range of 10 to 40 A. The high flow ultrafilters which we are describing have a surface porosity in the range of 15 to 25 angstrom units (0.0015-0.0025μm).


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


1997 ◽  
Vol 5 (4) ◽  
pp. 14-15
Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quality positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).


Sign in / Sign up

Export Citation Format

Share Document