An evalution of the nitrous acid – 3-methyl-2-benzothiazolinone hydrazone hydrochloride – ferric chloride assay for chitin in rust fungi and rust-infected tissue

1982 ◽  
Vol 60 (12) ◽  
pp. 2575-2580 ◽  
Author(s):  
Susan G. W. Kaminskyj ◽  
Michèle C. Heath

The growth of the bean rust and cowpea rust fungi was examined in cultivars of French bean and cowpea using light microscopy and the nitrous acid – 3-methyl-2-benzothiazolinone hydrazone hydrochloride – ferric chloride assay for chitin. Comparison of the results indicated that the chitin assay did not detect changes in vegetative growth but only detected substances present in mature and developing urediospores. Examination of urediospores indicated that the reactive component(s) was hexosamine, probably glucosamine, but not chitin. The presence of strongly reactive substances in the urediospores, and the apparent low level of chitin in vegetative mycelium compared with that in the mycelium of the commercial mushroom, suggest that this chitin assay is of little value in estimating rust fungus growth in infected plant tissue.


1991 ◽  
Vol 69 (8) ◽  
pp. 1642-1646 ◽  
Author(s):  
Myriam R. Fernandez ◽  
Michèle C. Heath

Bean leaves inoculated 24 h previously with the bean rust fungus were inoculated with spores of Cochliobolus heterostrophus, Stemphylium sarcinaeforme, Stemphylium botryosum, or Cladosporium fulvum. For all species except C. fulvum, hyphal growth resulting from stomatal penetrations was greater than that in leaves that were not rust-infected but did not continue for more than about 24 h. The incidence of direct penetrations for these three fungi also was increased by prior rust infection, and the incidence of epidermal wall appositions was reduced. Growth of C. fulvum in rust-infected leaves only exceeded that in control leaves when spores were injected into the intercellular spaces of the mesophyll tissue. Rust infection either had little effect on the incidence of cell death, normally induced by all of the tested fungi except C. fulvum, or it enhanced this response in association with greater fungal growth. From this and previous studies, it seems that successful rust infection increases the growth of a wider array of fungi nonparasitic to beans than treatments with growth regulators or intercellular washing fluids from rusted tissue. Its effect is most closely mimicked by preinoculation treatments with heat or protein synthesis inhibitors, but it does not induce indiscriminate susceptibility. Its effect may, in part, be due to the suppression of defenses involving wall modifications. Key words: Uromyces appendiculatus, induced susceptibility, nonhost resistance.





1985 ◽  
Vol 63 (12) ◽  
pp. 2144-2149 ◽  
Author(s):  
W. K. Kim ◽  
Michèle C. Heath ◽  
R. Rohringer

Proteins were extracted from urediospores of the bean rust fungus (Uromyces phaseoli var. typica: two isolates), of the cowpea rust fungus (U. phaseoli var. vignae; two isolates), and of the faba bean rust fungus (U. viciae-fabae; one isolate) and separated by two-dimensional isoelectric focusing – polyacrylamide gel electrophoresis under denaturing conditions. The two isolates of the cowpea rust fungus had identical polypeptide patterns; the two isolates of the bean rust fungus differed by 19 polypeptides. The polypeptide patterns of the bean rust, cowpea rust, and faba bean rust fungi differed markedly from each other. There were 277 polypeptides detected in extracts of the faba bean rust fungus, while more than 335 polypeptides were detected in extracts of each isolate of the other two fungi. While U. phaseoli var. typica and U. phaseoli var. vignae shared 183 polypeptides, U. viciae-fabae had only 149 and 146 polypeptides, respectively, in common with the other two rust fungi. This is consistent with the view that the two varieties of U. phaseoli are more closely related to each other than to U. viciae-fabae. However, when all detected polypeptides were compared, the differences between the two varieties were as extensive as those found between species. It is suggested, therefore, that the designation, by some mycologists of the cowpea rust fungus as a separate species, U. vignae, is correct.



1989 ◽  
Vol 67 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Janice F. Elmhirst ◽  
Michèle C. Heath

A comparison of the histological responses of species within the Phaseolus–Vigna plant complex to single isolates of the bean and cowpea rust fungi revealed that no particular response was restricted to any plant taxonomic group, although species differed in the proportion of infection sites at which a particular response was exhibited. Related species did not always show similar frequencies of responses and sometimes there were differences between different genotypes within a nonhost species. In host and nonhost species, preinoculation heat treatment commonly inhibited prehaustorial defenses and delayed the death of the invaded cell. Growing fungal colonies subsequently developed in many species, even those considered nonhosts, particularly if they exhibited a high frequency of prehaustorial defenses in untreated leaves. It is argued that a lack of heat-induced colony formation is a sign of parasite-specific resistance, which most likely evolved only in originally susceptible plants. Consequently, the data suggest that the bean rust fungus has had a long association with American species of the complex and that extant nonhost species may have evolved from susceptible ancestors. In contrast, the cowpea rust fungus appears to have had little evolutionary contact with these American species and may not be as closely related to the bean rust fungus as originally thought.



Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.



1996 ◽  
Vol 29 (2) ◽  
pp. 159-167 ◽  
Author(s):  
J. P. Martinez ◽  
J. V. Groth ◽  
N. D. Young


2000 ◽  
Vol 77 (11) ◽  
pp. 1551-1559 ◽  
Author(s):  
M W Harding ◽  
J C Stutz ◽  
R W Roberson

Components of disease development were measured in three cultivars of Phaseolus vulgaris L. (common bean) infected with Uromyces appendiculatus (Pers.:Pers.) Unger (bean rust fungus) race O. Disease measurements and light and electron microscope data of host-parasite relationships were obtained and analyzed. Uredinial size, infection efficiency, latent period, and fungal colony radius were measured from infected bean leaves that were grown under controlled conditions. Phaseolus vulgaris cultivar Pinto 111, a highly susceptible check, displayed the largest uredinia, the highest infection efficiency, large colony radii, and a short latent period. Cultivars Early Gallatin and Kentucky Wonder (K.W.) 814 displayed moderate and low susceptibility, respectively. Cultivar Early Gallatin had smaller uredinia, reduced infection efficiency, and longer latent period when compared with cv. Pinto 111. Cultivar K.W. 814 was characterized by minute pustules, restricted colony expansion, and the longest latent period. Ultrastructural data of host-parasite relationships were collected from infected leaf tissues and prepared for transmission electron microscopy by high-pressure cryofixation and freeze substitution. In 'Pinto 111' the collars around haustorial necks were composed of a fibrillar network embedded in an electron transparent matrix. Ultrastructural observations indicated that Cultivars K.W. 814 and Early Gallatin deposited more collar material than 'Pinto 111.' Networks of tubular endomembranes developed near the host-parasite interface in the host cytoplasm of cultivars K.W. 814 and Early Gallatin. The tubules showed continuity with the extrahaustorial membrane and contained an amorphous, electron-dense material in the lumen. Tubular endomembranes were not seen in the highly susceptible cultivar Pinto 111.



2003 ◽  
Vol 16 (5) ◽  
pp. 398-404 ◽  
Author(s):  
Denny G. Mellersh ◽  
Michèle C. Heath

Seventeen accessions of Arabidopsis thaliana inoculated with the cowpea rust fungus Uromyces vignae exhibited a variety of expressions of nonhost resistance, although infection hypha growth typically ceased before the formation of the first haustorium, except in Ws-0. Compared with wild-type plants, there was no increased fungal growth in ndr1 or eds1 mutants defective in two of the signal cascades regulated by the major class of Arabidopsis host resistance genes. However, in the Col-0 background, infection hyphae of U. vignae and two other rust fungi were longer in sid2 mutants defective in an enzyme that synthesizes salicylic acid (SA), in npr1 mutants deficient in a regulator of the expression of SA-dependent pathogenesis related (PR) genes, and in NahG plants containing a bacterial salicylate hydroxylase. Infection hyphae of U. vignae and U. appendiculatus but not of Puccinia helianthi were also longer in jar1 mutants, which are defective in the jasmonic acid defense signaling pathway. Nevertheless, haustorium formation increased only for the Uromyces spp. and only in sid2 mutants or NahG plants. Rather than the hypersensitive cell death that usually accompanies haustorium formation in nonhost plants, Arabidopsis typically encased haustoria in calloselike material. Growing fungal colonies of both Uromyces spp., indicative of a successful biotrophic relationship between plant and fungus, formed in NahG plants, but only U. vignae formed growing colonies in the sid2 mutants and cycloheximide-treated wild-type plants. Growing colonies did not develop in NahG tobacco or tomato plants. These data suggest that nonhost resistance of Arabidopsis to rust fungi primarily involves the restriction of infection hypha growth as a result of defense gene expression. However, there is a subsequent involvement of SA but not SA-dependent PR genes in preventing the Uromyces spp. from forming the first haustorium and establishing a sufficient biotrophic relationship to support further fungal growth. The U. vignae-Arabidopsis combination could allow the application of the powerful genetic capabilities of this model plant to the study of compatibility as well as nonhost resistance to rust fungi.



1991 ◽  
Vol 39 (6) ◽  
pp. 527 ◽  
Author(s):  
KS Braithwaite ◽  
JM Manners ◽  
DJ Maclean ◽  
JAG Irwin

Rust disease on the tropical pasture legume Macroptilium atropurpureum (siratro) is caused by Uromyces appendiculatus var. crassitunicatus. This pathogen was believed to be closely related to the bean (Phaseolus vulgaris) rust pathogen Uromyces appendiculatus var. appendiculatus. The genetic relationship between these two fungi was investigated. Total DNA hybridisations indicated that little homology exists between the high copy genomic DNA of these two rust fungi. Random genomic probes cloned from the bean rust fungus detected extensive Polymorphisms between the two, with only one probe from 17 being monomorphic. The ribosomal DNA repeat unit was also distinguished by RFLPs. It was calculated from the RFLP data that the bean rust fungus and the siratro rust fungus share only 8-14% sequence homology. The results indicate that the two fungi, although morphologically very similar, are not closely related genetically.



Sign in / Sign up

Export Citation Format

Share Document