Early events in the embryo sac after intraspecific and interspecific pollinations in Rhododendron kawakamii and R. retusum

1986 ◽  
Vol 64 (2) ◽  
pp. 282-291 ◽  
Author(s):  
V. Kaul ◽  
J. L. Rouse ◽  
E. G. Williams

Early events in the embryo sac of Rhododendron kawakamii and R. retusum have been studied after compatible self-pollinations and eight interspecific crosses, using sectioned ovaries, pistil squashes, and seed-set data. Ovules of Rhododendron kawakamii and R. retusum are anatropous, unitegmic, and tenuinucellate, with a typical eight-nucleate, seven-celled embryo sac. Fertilization normally occurs 4–5 days after pollination. The zygote lays down a callose wall but remains undivided during the first 13–15 days after pollination. The primary endosperm nucleus divides soon after fertilization, and development is cellular ab initio. Crosses of R. kawakamii (♂) with R. santapaui and R. retusum and crosses of R. retusum (♂) with R. kawakamii, R. santapaui, R. ovatum, and R. tashiroi showed apparently normal fertilization in a majority of ovules entered by pollen tubes. In crosses of R. kawakamii (♂) with R. quadrasianum and Kalmia latifolia entry of pollen tubes into ovules was delayed and frequently abnormal. Apart from compatible self-pollinations of R. kawakamii an R. retusum, only the cross of R. kawakamii (♂) with R. santapaui produced healthy seedlings. Of the remaining seven interspecific crosses only three showed significant embryo development in control pistils left to mature in situ. Similarities and differences in the breeding behaviour of R. kawakamii and R. retusum are discussed with reference to their taxonomic grouping within subsection Pseudovireya.

1986 ◽  
Vol 34 (4) ◽  
pp. 413 ◽  
Author(s):  
EG Williams ◽  
V Kaul ◽  
JL Rouse ◽  
BF Palser

Frequent overgrowths of pollen tubes within the embryo sac are characteristic of a number of interspecific crosses in the genus Rhododendron (Ericaceae). The combined techniques of sectioning, squashing and whole-ovule clearing have confirmed that in ovules showing this phenomenon the pollen tube fails to terminate growth and release sperms on entry into a synergid; instead it continues to grow beyond the synergid and egg cell, often filling the main body of the embryo sac with a coiled and distorted mass. Such ovules fail to develop further. The occurrence and possible causes of this error syndrome are discussed.


1995 ◽  
Vol 75 (3) ◽  
pp. 595-598
Author(s):  
Xiuying Tian ◽  
L. Van Caeseele ◽  
M. J. Sumner

When pollination occurred within 24 h after anthesis, 69.2% of the pods of Brassica rapa cultivar Candle contained at least 50% fertilized ovules. If pollination occurred later than 4 d after anthesis, an occasional ovule near the base of the pistil was fertilized; however, no significant seed set was observed. Pollen tubes were observed entering the locules of the ovary from pollinations carried out as late as 5 d after anthesis. At 3 d after anthesis, in unpollinated flowers, a general deterioration of the embryo-sac contents began and gradually increased to include integumentary cells by 6 d after anthesis. Some ovules swelled as though they were fertilized, but no embryos were present. The results suggest that yield reductions in this species may occur because of the reduction of fertilization potential through rapid degeneration of embryo sacs following anthesis. Key words:Brassica rapa, embryo sac, yield


1969 ◽  
Vol 17 (2) ◽  
pp. 215 ◽  
Author(s):  
N Prakash

In Darwinia the floral parts are differentiated in a "calyx-orolla-gynoeciumandroecium" sequence. In individual buds stages of microsporogenesis markedly precede corresponding stages of megasporogenesis. The anther is tetrasporangiate with all sporangia lying in one plane. The secretory tapetum is one- to three-layered within the same microsporangium and a large number of Ubisch bodies are formed. The anthers dehisce by minute lateral pores and an ingenious mechanism helps disperse the twocelled pollen grains. A basal placenta in the single loculus of the ovary bears four ovules in D. micropetala and two in D. fascicularis. In both species, however, only one ovule is functional after fertilization. The fully grown ovules are anatropous, crassinucellar, and bitegmic; the inner integument forms the micropyle. The parietal tissue is most massive at the completion of megasporogenesis but is progressively destroyed later. The embryo sac follows the Polygonum type of developnlent and when mature is five-nucleate, the three antipodals being ephemeral. Following fertilization, the primary endosperm nucleus divides before the zygote. Subsequent nuclear divisions in the endosperm mother cell are synchronous and lead to a free-nuclear endosperm which becomes secondarily cellular, starting from the micropylar end at the time the globular embryo assumes an elongated shape. Embryogeny is irregular and the mature embryo is straight with a massive radicle and a hypocotyl which terminates in two barely recognizable cotyledons. Sometimes the minute cotyledons are borne on a narrow neck-like extension of the hypocotyl. A suspensor is absent. Both integuments are represented in the seed coat and only the outer layer of the outer and the inner layer of the inner integuments, with their thick-walled tanniniferous cells, remain in the fully grown seed. The ovary wall is demarcated into an outer zone containing oil glands surrounded by cells containing a tannin-like substance and an inner zone of spongy parenchyma. In the fruit this spongy zone breaks down completely but the outer zone is retained. The two species of Darwinia, while closely resembling each other in their embryology, differ significantly from other Myrtaceae. However, no taxonomic conclusions are drawn at this stage, pending enquiry into the life history of other members of the tribe Chamaelaucieae.


1970 ◽  
Vol 18 (6) ◽  
pp. 439-449
Author(s):  
GEORGE E. WHEELER

Many of the cells in stem sections of several Commelinaceae species synthesized much new starch when incubated in buffered 1% glucose 1-phosphate solution. The starch appeared in the cytoplasm rather than in the plastids. Although the starch I2-KI color was uniform within any one cell, there was considerable variation from cell to cell, even in the same section. The colors with I2-KI ranged from blue, through purples to magenta and mahogany. Tests with α-amylase and with β-amylase showed the starch to be amylose. Microspectrophotometrically determined extinction curves, based on the new starch in situ, varied with the visualized color. As expected, starch which stained blue with I2-KI had an absorption maximum in the orange-red wavelengths above 600 mµ; increasingly red I2-KI colors were characterized by shifts of the absorption maximum further into the shorter wavelengths. The course of new starch digestion by α-amylase and by β-amylase was followed visually and with the microspectrophotometer. Similarities and differences between these spectral curves and those published for in vitro studies are pointed out. The difficulties met with in using the microspectrophotometric method are discussed.


2005 ◽  
Vol 44 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Nicholas F. Anderson ◽  
Cedric A. Grainger ◽  
Jeffrey L. Stith

Abstract Airborne in situ measurements of updrafts in tropical convective storms were analyzed to determine the similarities and differences between updrafts in a tropical continental and a tropical oceanic region. Two hundred fifteen updraft cores from the Tropical Rainfall Measuring Mission (TRMM) component of the Large Scale Biosphere–Atmosphere (LBA) experiment (tropical continental wet season) and 377 updraft cores from the Kwajalein Experiment (KWAJEX) (tropical oceanic) were analyzed in a similar manner to that of previous studies of tropical updrafts. Average speed, maximum speed, width, and mass flux of the updraft cores from the TRMM-LBA and KWAJEX were generally similar to each other and also were similar to results from previous studies of tropical updrafts.


2002 ◽  
Vol 50 (1) ◽  
pp. 83 ◽  
Author(s):  
T. F. Houston ◽  
P. G. Ladd

Conostephium (Epacridaceae) has flowers that conform with a buzz-pollination syndrome but, unlike most plants with this form of pollination, the anthers are hidden within the corolla tube. Vibrations generated by bees grasping the apices of the corolla tubes must be transferred via short broad filaments to the anthers. The anthers do not have pores but each dehisces from the apex by a slit that elongates over the time the flowers take to senesce (up to 10 days). This may limit self-fertilisation as the stigma is receptive as soon as it appears from between the very short corolla lobes, so little pollen is released at first but later this would increase as the slit elongates. Visitation by pollinators has rarely been seen but several observations of native bees (Leioproctus and Lasioglossum) working the flowers are presented. The bees visit the nectarless flowers of Conostephium only for pollen and must forage at other kinds of flowers to obtain nectar. Pollen tubes occurred in the stigmas of most older flowers of C. pendulum, so pollen delivery does not seem to limit seed set. Despite this, the species sets few fruit. From examination of the taxonomic positions of likely buzz-pollinated taxa in the family, it appears that pollination by sonication has arisen independently several times in the Epacridaceae, with primarily two different floral configurations.


1973 ◽  
Vol 12 (2) ◽  
pp. 403-419 ◽  
Author(s):  
D. DE NETTANCOURT ◽  
M. DEVREUX ◽  
A. BOZZINI ◽  
M. CRESTI ◽  
E. PACINI ◽  
...  

The experimental results obtained show that the tip of the incompatible pollen tube bursts open after the outer-wall has considerably expanded in the intercellular spaces of the conducting tissue and the inner-wall has disappeared and numerous particles have accumulated in the tube cytoplasm. These particles, which measure approximately 0.2 µm in diameter and give a weak reaction to the test of Thiéry, differ in many respects from the vesicles normally present in compatible pollen tubes growing through the style; they appear to resemble, in some cases, the spheres which are discharged by the compatible pollen tubes after they have reached the embryo-sac. It is considered that these observations support the current belief that the tube wall is the site of action for the incompatibility proteins and suggest that self-incompatibility is not a passive process resulting from lack of growth stimulation but an active event which leads to the destruction of the incompatible pollen tubes. The degradation mechanism involved appears similar to the one which enables the compatible pollen tube to release its contents in the degenerated synergid and presents some analogies with the lytic process taking place in virus-infected cells. The general hypothesis is presented that the particles observed in the cytoplasm of self-incompatible pollen tubes consist of a mixture of incompatibility proteins and of basic constituents of the tube wall.


1957 ◽  
Vol 35 (2) ◽  
pp. 139-153 ◽  
Author(s):  
Hugh P. Bell

Seed development was followed from fertilization to maturity. Pollen tubes required about 4 days to grow from stigma to ovule. In some plants, particularly bagged ones, nucellar cells remained alive and contents of the embryo sac degenerated. Many ovules did not develop. Seeds were counted and sorted in a random representative collection of 1075 berries. The average number of seeds per berry was 64.2. Of these 49.9 (or 77.7%) were imperfect. More complete pollination increased the percentage of normally developing ovules. Development of perfect seeds followed a familiar pattern. Unfamiliar features were noted as follows: 1. Degeneration of cells at both micropylar and chalazal ends resulted in a homogeneous plasma. This plasma formed strands across haustoria and almost completely surrounded the zygote. 2. Micropylar endosperm cells formed a dense plug. Developing embryos may have had difficulty in penetrating this plug. 3. Many embryos had died at some stage of development. 4. A conspicuous integumentary tapetum was present until the endosperm was about half its final size.Embryo development was the "soland" type. Mature seeds were "axile linear". Imperfect seeds were chiefly of two types: (a) medium sized and solid with middle integumentary layers lignified, or (b) small and collapsed with all tissues inside seed coat disintegrated. No imperfect seed had an embryo.


1993 ◽  
Vol 41 (1) ◽  
pp. 35 ◽  
Author(s):  
M Ramsey ◽  
N Prakash ◽  
S Cairns

The breeding systems of disjunct tableland and coastal populations of Christmas bells were determined using hand-pollination experiments. In both populations, 90% or more of self-pollinated plants produced seeds. Tableland plants were significantly more self-fertile than coastal plants (ratio of self seed set to cross seed set: tableland, 0.55 ± 0.03; coast, 0.08 ± 0.02). Significant variation among plants for self-fertility was found in both populations. Autofertility was 1.6% or less in both populations indicating that pollen vectors are necessary for seed set. Seed set by agamospermy in both populations was less than 0.1%. Percentage seed abortion was greater in self-pollinated plants than cross-pollinated plants in both populations. In both self- and cross-pollinated plants, seed abortion was twice as great in the coastal population than in the tableland population. No evidence was found for stigmatic or stylar self-incompatibility. Self and cross pollen adhered to and germinated equally well on stigmas in both populations (72 - 77% germination). Similarly, there were no differences between pollination treatments or populations in the percentage of ovules penetrated by pollen tubes (82 - 89% penetration). When self-pollination preceded cross-pollination by 24 h or longer seed set was significantly reduced compared to flowers that were cross-pollinated only, suggesting ovules were pre-empted by self pollen tubes. Collectively these results strongly suggest that self seed set was reduced by a mechanism operating at the ovule level, such as early-acting inbreeding depression due to recessive seed-aborting genes, although incomplete late-acting self-incompatibility cannot be ruled out. For coastal plants, this ovular mechanism largely prevents selfing, indicating plants were predominantly outcrossing although most produced some self seed. For tableland plants, substantial seed set by selfing may occur under natural conditions.


Sign in / Sign up

Export Citation Format

Share Document