scholarly journals Lignin-degrading activity and ligninolytic enzymes of different white-rot fungi: effects of manganese and malonate

1997 ◽  
Vol 75 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Tamara Vares ◽  
Annele Hatakka

Ten species of white-rot fungi, mainly belonging to the family Polyporaceae (Basidiomycotina), were studied in terms of their ability to degrade14C-ring labelled synthetic lignin and secrete ligninolytic enzymes in liquid cultures under varying growth conditions. Lignin mineralization by the fungi in an air atmosphere did not exceed 14% within 29 days. Different responses to the elevated Mn2+concentration and the addition of a manganese chelator (sodium malonate) were observed among various fungal species. This could be related with the utilization of either lignin peroxidase (LiP) or manganese peroxidase (MnP) for lignin depolymerization, i.e., some fungi apparently had an LiP-dominating ligninolytic system and others an MnP-dominating ligninolytic system. The LiP isoforms were purified from Trametes gibbosa and Trametes trogii. Isoelectric focusing of purified ligninolytic enzymes revealed the expression of numerous MnP isoforms in Trametes gibbosa, Trametes hirsuta, Trametes trogii, and Abortiporus biennis grown under a high (50-fold) Mn2+level (120 μM) with the addition of the chelator. In addition, two to three laccase isoforms were detected. Key words: white-rot fungi, lignin degradation, lignin peroxidase, manganese peroxidase, manganese, malonate.

2021 ◽  
Vol 13 (2) ◽  
pp. 243-249
Author(s):  
Yohanes Bernard Subowo ◽  
Arwan Sugiharto

Some species of Basidiomycetes, specifically white rot groups, produce three ligninolytic enzymes, namely, Lignin Peroxidase (LiP), Manganese Peroxidase (MnP) and Laccase (Lac), which have low activity in degrading Palm Oil Mill Effluent (POME). The research objective was to obtain the data on the ability of the Coltricia cinnamomea to produce LiP, MnP, and Lac enzymes to degrade POME. This research also studied the effect of sucrose, alcohol, veratryl alcohol, CuSO4 and ZnSO4,as inducers. Isolates of Coltricia cinnamomea, which were stored in a PDA media at -20℃ were obtained from the Microbiology section of the Research Center for Biology (LIPI). Furthermore, the growth media used were DM, Bean sprout Extract (TE) and PDB. The result indicated that PDB is the most suitable growth media for the production of ligninolytic enzymes, because in this medium these enzymes showed the highest activity. It was also observed that sucrose increased the laccase activity by 40.80%. Furthermore, Coltricia cinnamomea was able to reduce the concentration of Poly R-478 by 60.74%, after the addition of ZnSO4. In addition, it degraded and decreased the color and COD of POME, by 72.63% and 91.19% respectively, after the addition of veratryl alcohol, and incubation for 10 days. Therefore, this fungus can be used to degrade POME in order to prevent environmental pollution. Coltricia cinnamomea has not been used for POME degradation. By using Coltricia cinnamomea, we  obtained new data regarding the activity of laccase and its ability to degrade POME. 


BioResources ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. 5224-5259
Author(s):  
Isroi ◽  
Ria Millati ◽  
Siti Syamsiah ◽  
Claes Niklasson ◽  
Muhammad Nur Cahyanto ◽  
...  

Lignocellulosic carbohydrates, i.e. cellulose and hemicellulose, have abundant potential as feedstock for production of biofuels and chemicals. However, these carbohydrates are generally infiltrated by lignin. Breakdown of the lignin barrier will alter lignocelluloses structures and make the carbohydrates accessible for more efficient bioconversion. White-rot fungi produce ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) and efficiently mineralise lignin into CO2 and H2O. Biological pretreatment of lignocelluloses using white-rot fungi has been used for decades for ruminant feed, enzymatic hydrolysis, and biopulping. Application of white-rot fungi capabilities can offer environmentally friendly processes for utilising lignocelluloses over physical or chemical pretreatment. This paper reviews white-rot fungi, ligninolytic enzymes, the effect of biological pretreatment on biomass characteristics, and factors affecting biological pretreatment. Application of biological pretreatment for enzymatic hydrolysis, biofuels (bioethanol, biogas and pyrolysis), biopulping, biobleaching, animal feed, and enzymes production are also discussed.


Molecules ◽  
2016 ◽  
Vol 21 (11) ◽  
pp. 1553 ◽  
Author(s):  
Martina Vrsanska ◽  
Stanislava Voberkova ◽  
Vratislav Langer ◽  
Dagmar Palovcikova ◽  
Amitava Moulick ◽  
...  

1995 ◽  
Vol 73 (S1) ◽  
pp. 1011-1018 ◽  
Author(s):  
Ian D. Reid

Lignin is an aromatic polymer forming up to 30% of woody plant tissues, providing rigidity and resistance to biological attack. Because it is insoluble, chemically complex, and lacking in hydrolysable linkages, lignin is a difficult substrate for enzymatic depolymerization. Certain fungi, mostly basidiomycetes, are the only organisms able to extensively biodegrade it; white-rot fungi can completely mineralize lignin, whereas brown-rot fungi merely modify lignin while removing the carbohydrates in wood. Several oxidative and reductive extracellular enzymes (lignin peroxidase, manganese peroxidase, laccase, and cellobiose:quinone oxidoreductase) have been isolated from ligninolytic fungi; the role of these enzymes in lignin biodegradation is being intensively studied. Enzymatic combustion, a process wherein enzymes generate reactive intermediates, but do not directly control the reactions leading to lignin breakdown, has been proposed as the mechanism of lignin biodegradation. The economic consequences of lignin biodegradation include wood decay and the biogeochemical cycling of woody biomass. Efforts are being made to harness the delignifying abilities of white-rot fungi to aid wood and straw pulping and pulp bleaching. These fungi can also be used to degrade a variety of pollutants in wastewaters and soils, to increase the digestibility of lignocellulosics, and possibly to bioconvert lignins to higher value products. Key words: delignification, white-rot fungi, biobleaching, lignin peroxidase, manganese peroxidase, laccase.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Sita Heris Anita ◽  
Fitria Ningsih ◽  
Dede Heri Yuli Yanto

The ability of the tropical white-rot fungi and their enzyme to decolorize synthetic dyes was investigated. Production of lignin-modifying enzymes (LMEs) from the three new isolated fungi, namely Trametes hirsuta D7, Ceriporia sp. BIOM 3, and Cymatoderma dendriticum WM01 were observed for 9 days incubation under static condition. The results showed that the LMEs production enhanced in the present of guaiacol. T. hirsuta D7 produced only laccase (Lac), with the highest activity was 22.6 U/L on the 5th-day of the cultivation. At the same time, Ceriporia sp. BIOM 3 and C. dendriticum WM01 secreted both laccases (Lac) with the activities 0.2 U/L and 1.0 U/L, respectively, and manganese peroxidase (MnP) with the activities 0.1 U/L and 1.0 U/L, respectively. Among the fungi, T. hirsuta D7 efficiently degraded 65% Remazol Brilliant Blue–R (RBBR) dye within 72 h using the only laccase. This study shows that laccase may have a major role in synthetic dyes' decolorization process, followed by MnP and LiP.


1998 ◽  
Vol 64 (6) ◽  
pp. 2020-2025 ◽  
Author(s):  
Lee A. Beaudette ◽  
Stephen Davies ◽  
Phillip M. Fedorak ◽  
Owen P. Ward ◽  
Michael A. Pickard

ABSTRACT Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4′-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl (2,4′,5-TCB), 2,2′,4,4′-tetrachlorobiphenyl, 2,2′,5,5′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl. The congener tested for mineralization was 2,4′,5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains ofBjerkandera adusta (UAMH 8258 and UAMH 7308), one strain ofPleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower, ≤11%, because it measures a complete oxidation of at least part of the congener molecule but the results were more consistent and therefore more reliable in assessment of PCB biodegradation.


2015 ◽  
Vol 9 (7) ◽  
pp. 1 ◽  
Author(s):  
Hendro Risdianto ◽  
Susi Sugesty

White rot fungi have an ability to degrade lignin by employing lignin-degrading enzymes i.e Lignin Peroxidase, Manganese Peroxidase and Laccase. Therefore, the fungi can be utilized on the pretreatment of biomass in pulp making (biopulping) and biobleaching. In this study, the pretreatment using White Rot Fungi of Marasmius sp. has been conducted on the the Oil Palm Empty Fruit Bunches (EFBs). Marasmius sp. has been grown on EFBs for 30 days. The results showed that the lignin content could be removed by 35.94%. However, cellulose and hemicelluloses relatively did not show any changes in the EFBs. From the pulping process, the pretreatment exhibited the Kappa Number of 31.10. Compared to no pretreatment of white rot fungi, the Kappa Number obtained was 38.63. This result demonstrated a promising process for a green pulp making.


Sign in / Sign up

Export Citation Format

Share Document