Biodegradation of lignin

1995 ◽  
Vol 73 (S1) ◽  
pp. 1011-1018 ◽  
Author(s):  
Ian D. Reid

Lignin is an aromatic polymer forming up to 30% of woody plant tissues, providing rigidity and resistance to biological attack. Because it is insoluble, chemically complex, and lacking in hydrolysable linkages, lignin is a difficult substrate for enzymatic depolymerization. Certain fungi, mostly basidiomycetes, are the only organisms able to extensively biodegrade it; white-rot fungi can completely mineralize lignin, whereas brown-rot fungi merely modify lignin while removing the carbohydrates in wood. Several oxidative and reductive extracellular enzymes (lignin peroxidase, manganese peroxidase, laccase, and cellobiose:quinone oxidoreductase) have been isolated from ligninolytic fungi; the role of these enzymes in lignin biodegradation is being intensively studied. Enzymatic combustion, a process wherein enzymes generate reactive intermediates, but do not directly control the reactions leading to lignin breakdown, has been proposed as the mechanism of lignin biodegradation. The economic consequences of lignin biodegradation include wood decay and the biogeochemical cycling of woody biomass. Efforts are being made to harness the delignifying abilities of white-rot fungi to aid wood and straw pulping and pulp bleaching. These fungi can also be used to degrade a variety of pollutants in wastewaters and soils, to increase the digestibility of lignocellulosics, and possibly to bioconvert lignins to higher value products. Key words: delignification, white-rot fungi, biobleaching, lignin peroxidase, manganese peroxidase, laccase.

1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 606-614 ◽  
Author(s):  
Jing Wang ◽  
Jian Li ◽  
Shujun Li ◽  
Camille Freitag ◽  
J. J. Morrell

Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.


2000 ◽  
Vol 66 (11) ◽  
pp. 4725-4734 ◽  
Author(s):  
Claudia A. Jasalavich ◽  
Andrea Ostrofsky ◽  
Jody Jellison

ABSTRACT We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.


1997 ◽  
Vol 75 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Tamara Vares ◽  
Annele Hatakka

Ten species of white-rot fungi, mainly belonging to the family Polyporaceae (Basidiomycotina), were studied in terms of their ability to degrade14C-ring labelled synthetic lignin and secrete ligninolytic enzymes in liquid cultures under varying growth conditions. Lignin mineralization by the fungi in an air atmosphere did not exceed 14% within 29 days. Different responses to the elevated Mn2+concentration and the addition of a manganese chelator (sodium malonate) were observed among various fungal species. This could be related with the utilization of either lignin peroxidase (LiP) or manganese peroxidase (MnP) for lignin depolymerization, i.e., some fungi apparently had an LiP-dominating ligninolytic system and others an MnP-dominating ligninolytic system. The LiP isoforms were purified from Trametes gibbosa and Trametes trogii. Isoelectric focusing of purified ligninolytic enzymes revealed the expression of numerous MnP isoforms in Trametes gibbosa, Trametes hirsuta, Trametes trogii, and Abortiporus biennis grown under a high (50-fold) Mn2+level (120 μM) with the addition of the chelator. In addition, two to three laccase isoforms were detected. Key words: white-rot fungi, lignin degradation, lignin peroxidase, manganese peroxidase, manganese, malonate.


Molecules ◽  
2016 ◽  
Vol 21 (11) ◽  
pp. 1553 ◽  
Author(s):  
Martina Vrsanska ◽  
Stanislava Voberkova ◽  
Vratislav Langer ◽  
Dagmar Palovcikova ◽  
Amitava Moulick ◽  
...  

1992 ◽  
Vol 38 (8) ◽  
pp. 811-822 ◽  
Author(s):  
Michael Freitag ◽  
Jeffrey J. Morrell

Decolorization of the polymeric dye Poly R-478, an indicator of phenoloxidase activity, was examined as a potential method for separating white- and brown-rot fungi taxonomically and for screening for ligninolytic capability. In plate tests, decolorization proceeded more slowly than radial growth, which indicates that decolorizing enzymes are associated with growing and developed hyphae. Strains of the same species differed in decolorizing ability, but as expected, there were no differences between monokaryons and dikaryons of the same species. Raising the temperature from 20 to 40 °C usually increased the decolorization rate, but less than it increased the growth rate. Most brown-rot, soft-rot, or xylophilous fungi did not decolorize the dye, but 16 of 47 brown-rot fungi weakly decolorized the dye at 20 or 30 °C. Aspergillus niger and one Henningsomyces sp. also decolorized the dye. Studies with the brown-rot fungi Gloeophyllum trabeum and Fomitopsis pinicola on liquid media revealed no lignin peroxidase or manganese-dependent peroxidase activity, although nonspecific peroxidase activity was detected. Poly R-478 proved useful for selecting most white-rot fungi; however, some brown-rot fungi also reacted positively in these tests. Further studies on the pathways and mechanisms of dye decolorization by brown-rot fungi are recommended. Key words: brown rot, white rot, polymeric dyes, lignin peroxidase, manganese peroxidase.


2021 ◽  
Vol 9 (1) ◽  
pp. 149
Author(s):  
Neha Sahu ◽  
Zsolt Merényi ◽  
Balázs Bálint ◽  
Brigitta Kiss ◽  
György Sipos ◽  
...  

Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.


1998 ◽  
Vol 64 (6) ◽  
pp. 2020-2025 ◽  
Author(s):  
Lee A. Beaudette ◽  
Stephen Davies ◽  
Phillip M. Fedorak ◽  
Owen P. Ward ◽  
Michael A. Pickard

ABSTRACT Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4′-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl (2,4′,5-TCB), 2,2′,4,4′-tetrachlorobiphenyl, 2,2′,5,5′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl. The congener tested for mineralization was 2,4′,5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains ofBjerkandera adusta (UAMH 8258 and UAMH 7308), one strain ofPleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower, ≤11%, because it measures a complete oxidation of at least part of the congener molecule but the results were more consistent and therefore more reliable in assessment of PCB biodegradation.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8039-8050
Author(s):  
Jiahe Shen ◽  
Lipeng Hou ◽  
Haipeng Sun ◽  
Mingyang Hu ◽  
Lihua Zang ◽  
...  

A synergistic effect was found between the electro-Fenton (E-Fenton) process and a white-rot enzyme (Trametes versicolor) system relative to the degradation of dealkaline lignin. The hydrogen peroxide produced by the E-Fenton process reacted with Fe2+ on the cathode to generate a large number of hydroxyl radicals. These hydroxyl radicals directly degraded various functional groups in lignin, which led to the quick initiation of lignin peroxidase (LiP) and manganese peroxidase (MnP) enzymatic hydrolysis and accelerated the progress of lignin biodegradation. In addition, the hydroxyl radicals produced by the Fenton reaction converted nonphenolic lignin into phenolic lignin, further promoting the ability of manganese peroxidase and laccase to degrade the lignin. Additionally, the Fe3+ secreted by white-rot fungi accelerated the regeneration of Fe2+ on the composite cathode, which sustained the lignin degradation system. In the synergistic system, mycelium growth was significantly improved, with the maximum growth amount reaching 2.3 g and the lignin degradation rate reaching 84.5%, the activity of the three enzymes increased with the increase of currents over 96 h. Among them, the activity of MnP increased significantly to 402 U/L.


Sign in / Sign up

Export Citation Format

Share Document