Gradient-based design robustness measure for robust geotechnical design

2014 ◽  
Vol 51 (11) ◽  
pp. 1331-1342 ◽  
Author(s):  
Wenping Gong ◽  
Sara Khoshnevisan ◽  
C. Hsein Juang

This paper presents a gradient-based robustness measure for robust geotechnical design (RGD) that considers safety, design robustness, and cost efficiency simultaneously. In the context of robust design, a design is deemed robust if the system response of concern is insensitive, to a certain degree, to the variation of noise factors (i.e., uncertain geotechnical parameters, loading parameters, construction variation, and model biases or errors). The key to a robust design is a quantifiable robustness measure with which the robust design optimization can be effectively and efficiently implemented. Based on the developed gradient-based robustness measure, a robust design optimization framework is proposed. In this framework, the design (safety) constraint is analyzed using advanced first-order second-moment (AFOSM) method, considering the variation in the noise factors. The design robustness, in terms of sensitivity index (SI), is evaluated using the normalized gradient of the system response to the noise factors, which can be efficiently computed from the by-product of AFOSM analysis. Within the proposed framework, robust design optimization is performed with two objectives, design robustness and cost efficiency, while the design (safety) constraint is satisfied by meeting a target reliability index. Generally, cost efficiency and design robustness are conflicting objectives and the robust design optimization yields a Pareto front, which reveals a tradeoff between the two objectives. Through an illustrative example of a shallow foundation design, the effectiveness and significance of this new robust design approach is demonstrated.

2004 ◽  
Vol 31 (3-4) ◽  
pp. 361-394 ◽  
Author(s):  
M. Papadrakakis ◽  
N.D. Lagaros ◽  
V. Plevris

In engineering problems, the randomness and uncertainties are inherent and the scatter of structural parameters from their nominal ideal values is unavoidable. In Reliability Based Design Optimization (RBDO) and Robust Design Optimization (RDO) the uncertainties play a dominant role in the formulation of the structural optimization problem. In an RBDO problem additional non deterministic constraint functions are considered while an RDO formulation leads to designs with a state of robustness, so that their performance is the least sensitive to the variability of the uncertain variables. In the first part of this study a metamodel assisted RBDO methodology is examined for large scale structural systems. In the second part an RDO structural problem is considered. The task of robust design optimization of structures is formulated as a multi-criteria optimization problem, in which the design variables of the optimization problem, together with other design parameters such as the modulus of elasticity and the yield stress are considered as random variables with a mean value equal to their nominal value. .


Author(s):  
S. Gunawan ◽  
S. Azarm

We present a method for estimating the parameter sensitivity of a design alternative for use in robust design optimization. The method is non-gradient based: it is applicable even when the objective function of an optimization problem is non-differentiable and/or discontinuous with respect to the parameters. Also, the method does not require a presumed probability distribution for parameters, and is still valid when parameter variations are large. The sensitivity estimate is developed based on the concept that associated with each design alternative there is a region in the parameter variation space whose properties can be used to predict that design’s sensitivity. Our method estimates such a region using a worst-case scenario analysis and uses that estimate in a bi-level robust optimization approach. We present a numerical and an engineering example to demonstrate the applications of our method.


2019 ◽  
Vol 17 (10) ◽  
pp. 1950079
Author(s):  
Qiong Wang

In the robust design, correlations of uncertain parameters exist widely and have an influence on the results in most cases. It is essential to develop a robust design optimization method considering parametric correlation to future improve the analysis accuracy and engineering applicability. In this paper, a robust design optimization method based on multidimensional parallelepiped convex model is presented. Considering the effects of the interval uncertainties and their correlations, a robust design optimization model considering correlated intervals is established. In the established model, the average performance and robustness of the system response of concern are taken as the design optimization objectives, and the correlations among interval parameters are quantified by integrating the multidimensional parallelepiped convex model. And then, through an independence transforming procedure it can be converted into an independent interval model, which is ultimately converted into a deterministic multi-objective optimization model by using the interval possibility degree to cope with the uncertain constraints. Finally, the deterministic multi-objective optimization model is treated by coupling an efficient micro multi-objective genetic algorithm with the first order Taylor expansion. The feasibility and practicability of the proposed method are demonstrated by the numerical and engineering examples.


2003 ◽  
Vol 126 (3) ◽  
pp. 395-402 ◽  
Author(s):  
S. Gunawan ◽  
S. Azarm

We present a method for estimating the parameter sensitivity of a design alternative for use in single objective robust design optimization. The method is non-gradient based: it is applicable even when the objective function of an optimization problem is non-differentiable and/or discontinuous with respect to the parameters. Also, the method does not require a presumed probability distribution for parameters, and is still valid when parameter variations are large. The sensitivity estimate is developed based on the concept that associated with each design alternative there is a region in the parameter variation space whose properties can be used to predict that design’s sensitivity. Our method estimates such a region using a worst-case scenario analysis and uses that estimate in a bi-level robust optimization approach. We present a numerical and an engineering example to demonstrate the applications of our method.


Sign in / Sign up

Export Citation Format

Share Document