Estimating critical height of unsupported trenches in vadose zone

2021 ◽  
Vol 58 (1) ◽  
pp. 66-82
Author(s):  
Adin Richard ◽  
Won Taek Oh ◽  
Gregory Brennan

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties; therefore, trenches should be excavated with extreme precaution. Critical height (i.e., maximum depth that can be excavated without failure) is the most important design consideration for ensuring the stability of unsupported trenches. Because excavation work is often done in the vadose zone, the influence of matric suction should be taken into account when estimating the critical height of an unsupported trench. In this study, an attempt was made to estimate the critical heights of unsupported trenches using three distinct approaches: (i) analytical method based on the extended Rankine earth pressure theory, (ii) finite element coupled stress – pore-water pressure analysis, and (iii) limit equilibrium method (i.e., Bishop’s simplified and Morgenstern–Price method). It was assumed that the trenches were excavated in an engineered sand (Unimin 7030) and Indian Head till, which represent cohesionless and cohesive soils, respectively, considering various practical scenarios. Geotechnical modeling software, GeoStudio (ver. 2016; SIGMA/W and SLOPE/W), was used for both finite element analysis and the limit equilibrium method.

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Rui Zhang ◽  
Jie Zhao ◽  
Guixuan Wang

Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM), and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.


2018 ◽  
Vol 10 (1) ◽  
pp. 932-939 ◽  
Author(s):  
Weiping Liu ◽  
Lina Hu ◽  
Yongxuan Yang ◽  
Mingfu Fu

AbstractThis paper presents a method to determine the limit support pressure of tunnel face in multi-layer soils below river considering the water pressure. The proposed method is based on the 3D Terzaghi earth pressure theory and the wedge theory considering the water pressure. The limit support pressures are investigated using the limit equilibrium method and compared to those calculated using a numerical method, such as FLAC3D. Four cases focusing different combinations of three layers are analyzed. The results obtained by the numerical method agree well with the predictions of the proposed limit equilibrium method. The limit support pressure obtained using the limit equilibrium method is greater than that obtained by the numerical method. The limit equilibrium method is safe and conservative in obtaining the limit support pressure. The proposed limit equilibrium method is expected to be easily adaptable and to enhance the reliability of tunnel design and construction in multi-layer soils below river.


2008 ◽  
Vol 02 (01) ◽  
pp. 1-17 ◽  
Author(s):  
HOE I. LING ◽  
LIXUN SUN ◽  
HUABEI LIU ◽  
YOSHIYUKI MOHRI ◽  
TOSHINORI KAWABATA

A coupled stress-flow finite element procedure, based on dynamic Biot equations, was used to analyze the behavior of pipe buried in liquefiable soil. The governing equations, soil constitutive model, finite element discretization and solutions were described. The results of analysis were compared with two cases of dynamic centrifuge test of soil deposit and pipe conducted at 30 g acceleration field. The horizontal soil deposit was analyzed followed by the deposit having a buried pipe of diameter 10 cm (3 m in prototype). The deposit was composed of loose Nevada sand that was saturated with a viscous solution in satisfying the similitude rules of time for the dynamic event and diffusion phenomena. The response of the ground, such as acceleration and excess pore water pressure, and the earth pressure and uplifting of the pipe, were presented and compared. The results of analysis indicated that a coupled stress-flow finite element procedure where the soil was expressed by Pastor–Zienkiewicz Mark-III model was able to simulate the dynamic response of the soil and pipe up to the stage of liquefaction. Several other issues related to the analysis were discussed.


1984 ◽  
Vol 21 (1) ◽  
pp. 166-175 ◽  
Author(s):  
Harianto Rahardjo ◽  
Delwyn G. Fredlund

The calculation of the lateral earth force using the limit equilibrium method of slices is an indeterminate problem. An assumption regarding the direction or the magnitude of certain forces, or the position of the line of thrust can be used to render the problem determinate.A general formulation for the lateral earth force is derived in accordance with the assumptions involved in the general limit equilibrium (GLE) method. An assumption concerning a direction of the interslice forces is utilized to solve the problem of indeterminancy. Horizontal force equilibrium conditions within a sliding mass are used to compute the magnitude of the active and passive forces. The point of application of the lateral earth force is obtained by considering moment equilibrium for each slice.The coefficient of lateral earth force obtained from the GLE method agrees closely with the results obtained from most other theories. Comparisons are made to the Coulomb theory (i.e., using a planar slip surface) and other theories using a curved or a composite slip surface.Data are presented for the case of a horizontal cohesionless backfill against a vertical wall. The lateral earth force can be contoured on the grid of centers of rotation. These contours have a bell-shaped characteristic and can be used to locate the critical center of rotation.The main advantage of this method lies in its capability to analyze arbitrarily stratified soil deposits with complex geometries. Different conditions of pore-water pressure, shear strength, and external loading can be accommodated in the analysis. Factors of safety greater than 1.0 can be applied to the shear strength of the soil for design purposes. Keywords: lateral earth force, active force, passive force, general limit equilibrium, interslice forces, and coefficient of lateral earth force.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hongjun Li ◽  
Hong Zhong ◽  
Zuwen Yan ◽  
Xuedong Zhang

This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM) for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM) and the shear strength reduction method (SSRM) through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.


Sign in / Sign up

Export Citation Format

Share Document