Discrete Element Modelling of Rock Creep Behaviour using Rate Process Theory

Author(s):  
José G. Gutiérrez-Ch ◽  
Salvador Senent ◽  
Eduardo Estebanez ◽  
Rafael Jimenez

Rock creep behavior is crucial in many rock engineering projects. Different approaches have been proposed to model rock creep behavior; however, many cannot reproduce tertiary creep (i.e., accelerating strain rates leading to rock failure). In this work, a discrete element model (DEM) is employed, in conjunction with the rate process theory [Kuhn MR, Mitchel JK. Modelling of soil creep with the discrete element method. Eng Computations. 1992;9(2):277–287] to simulate rock creep. The DEM numerical sample is built using a mixture of contact models between particles that combines the Flat Joint Contact Model and the Linear Model. Laboratory uniaxial compression creep tests conducted on intact slate samples are used as a benchmark to validate the methodology. Results demonstrate that, when properly calibrated, DEM models combined with the rate process theory can reproduce all creep stages observed in slate rock samples in the laboratory, including and without using constitutive models that incorporate an explicit dependence of strain rate with time. The DEM results also suggest that creep is associated to damage in the samples during the laboratory tests, due to new micro-cracks that appear when the load is applied and maintained constant at each loading stage.

2022 ◽  
Vol 142 ◽  
pp. 104559
Author(s):  
J.G. Gutiérrez-Ch ◽  
S. Senent ◽  
P. Zeng ◽  
R. Jimenez

2016 ◽  
Vol 87 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Masayuki Takatera ◽  
Ken Ishizawa ◽  
KyoungOk Kim

The effect of adhesive interlining on the creep behavior of a woven fabric in the bias direction was investigated. Three-element viscoelastic models were used to approximate the creep behavior of a face fabric and adhesive interlining. The creep model of a laminated fabric comprised a six-element model in which two three-element models are connected in parallel with the three-element model. Creep tests were carried out using face fabrics, adhesive interlinings, and their laminated fabrics without and with bonding adhesive interlining by hanging samples in the 45° bias direction under their own weight for 7 days. Creep strains of face fabrics bonded with adhesive interlining were found to be weaker than those of the face fabrics. The creep behavior for the face and interlining fabrics could be approximated using the three-element viscoelastic model with appropriate parameters. The experimental creep behavior of a laminated fabric without bonding was similar to the theoretical behavior. However, the experimental creep of laminated fabrics with bonding interlining was less than the calculated creep, owing to the increase in stiffness due to the adhesive. By revising the six-element model with the strains just after hanging and for 2 days, it was possible to predict the creep strain over 7 days.


RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48133-48146 ◽  
Author(s):  
Tian Hao

Inspired by the Marcus theory of electron transfer, electrical conductivity equations without reference to any specific materials are derived on the basis of Eyring’s rate process theory and the free volume concept.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 57212-57215 ◽  
Author(s):  
Tian Hao

The viscosity concept is introduced to granular powders after the analogous granular temperature is defined, and the viscosity equations are derived with the Eyring's rate process theory and free volume concept.


Sign in / Sign up

Export Citation Format

Share Document