scholarly journals Discrete Element Modelling of Rock Creep in Deep Tunnels using Rate Process Theory

2021 ◽  
Vol 833 (1) ◽  
pp. 012103
Author(s):  
J G Gutiérrez-Ch ◽  
S Senent ◽  
P Zeng ◽  
R Jimenez
Author(s):  
José G. Gutiérrez-Ch ◽  
Salvador Senent ◽  
Eduardo Estebanez ◽  
Rafael Jimenez

Rock creep behavior is crucial in many rock engineering projects. Different approaches have been proposed to model rock creep behavior; however, many cannot reproduce tertiary creep (i.e., accelerating strain rates leading to rock failure). In this work, a discrete element model (DEM) is employed, in conjunction with the rate process theory [Kuhn MR, Mitchel JK. Modelling of soil creep with the discrete element method. Eng Computations. 1992;9(2):277–287] to simulate rock creep. The DEM numerical sample is built using a mixture of contact models between particles that combines the Flat Joint Contact Model and the Linear Model. Laboratory uniaxial compression creep tests conducted on intact slate samples are used as a benchmark to validate the methodology. Results demonstrate that, when properly calibrated, DEM models combined with the rate process theory can reproduce all creep stages observed in slate rock samples in the laboratory, including and without using constitutive models that incorporate an explicit dependence of strain rate with time. The DEM results also suggest that creep is associated to damage in the samples during the laboratory tests, due to new micro-cracks that appear when the load is applied and maintained constant at each loading stage.


2022 ◽  
Vol 142 ◽  
pp. 104559
Author(s):  
J.G. Gutiérrez-Ch ◽  
S. Senent ◽  
P. Zeng ◽  
R. Jimenez

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Huiqi Li ◽  
Glenn McDowell ◽  
John de Bono

Abstract A new time-delayed periodic boundary condition (PBC) has been proposed for discrete element modelling (DEM) of periodic structures subject to moving loads such as railway track based on a box test which is normally used as an element testing model. The new proposed time-delayed PBC is approached by predicting forces acting on ghost particles with the consideration of different loading phases for adjacent sleepers whereas a normal PBC simply gives the ghost particles the same contact forces as the original particles. By comparing the sleeper in a single sleeper test with a fixed boundary, a normal periodic boundary and the newly proposed time-delayed PBC (TDPBC), the new TDPBC was found to produce the closest settlement to that of the middle sleeper in a three-sleeper test which was assumed to be free of boundary effects. It appears that the new TDPBC can eliminate the boundary effect more effectively than either a fixed boundary or a normal periodic cell. Graphic abstract


2021 ◽  
Vol 386 ◽  
pp. 144-153
Author(s):  
Jacob Mortensen ◽  
Joachim Faldt Faurholt ◽  
Emil Hovad ◽  
Jens Honoré Walther

Sign in / Sign up

Export Citation Format

Share Document